SOPBench: Evaluating Language Agents at Following Standard Operating Procedures and Constraints
- URL: http://arxiv.org/abs/2503.08669v2
- Date: Tue, 17 Jun 2025 17:50:44 GMT
- Title: SOPBench: Evaluating Language Agents at Following Standard Operating Procedures and Constraints
- Authors: Zekun Li, Shinda Huang, Jiangtian Wang, Nathan Zhang, Antonis Antoniades, Wenyue Hua, Kaijie Zhu, Sirui Zeng, Chi Wang, William Yang Wang, Xifeng Yan,
- Abstract summary: SOPBench is an evaluation pipeline that transforms each service-specific SOP code program into a directed graph of executable functions.<n>Our approach transforms each service-specific SOP code program into a directed graph of executable functions and requires agents to call these functions based on natural language SOP descriptions.<n>We evaluate 18 leading models, and results show the task is challenging even for top-tier models.
- Score: 59.645885492637845
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As language agents increasingly automate critical tasks, their ability to follow domain-specific standard operating procedures (SOPs), policies, and constraints when taking actions and making tool calls becomes essential yet remains underexplored. To address this gap, we develop an automated evaluation pipeline SOPBench with: (1) executable environments containing 167 tools/functions across seven customer service domains with service-specific SOPs and rule-based verifiers, (2) an automated test generation framework producing over 900 verified test cases, and (3) an automated evaluation framework to rigorously assess agent adherence from multiple dimensions. Our approach transforms each service-specific SOP code program into a directed graph of executable functions and requires agents to call these functions based on natural language SOP descriptions. The original code serves as oracle rule-based verifiers to assess compliance, reducing reliance on manual annotations and LLM-based evaluations. We evaluate 18 leading models, and results show the task is challenging even for top-tier models (like GPT-4o, Claude-3.7-Sonnet), with variances across domains. Reasoning models like o4-mini-high show superiority while other powerful models perform less effectively (pass rates of 30%-50%), and small models (7B, 8B) perform significantly worse. Additionally, language agents can be easily jailbroken to overlook SOPs and constraints. Code, data, and over 24k agent trajectories are released at https://github.com/Leezekun/SOPBench.
Related papers
- OmniEAR: Benchmarking Agent Reasoning in Embodied Tasks [52.87238755666243]
We present OmniEAR, a framework for evaluating how language models reason about physical interactions, tool usage, and multi-agent coordination in embodied tasks.<n>We model continuous physical properties and complex spatial relationships across 1,500 scenarios spanning household and industrial domains.<n>Our systematic evaluation reveals severe performance degradation when models must reason from constraints.
arXiv Detail & Related papers (2025-08-07T17:54:15Z) - Visual Document Understanding and Question Answering: A Multi-Agent Collaboration Framework with Test-Time Scaling [83.78874399606379]
We propose MACT, a Multi-Agent Collaboration framework with Test-Time scaling.<n>It comprises four distinct small-scale agents, with clearly defined roles and effective collaboration.<n>It shows superior performance with a smaller parameter scale without sacrificing the ability of general and mathematical tasks.
arXiv Detail & Related papers (2025-08-05T12:52:09Z) - SetupBench: Assessing Software Engineering Agents' Ability to Bootstrap Development Environments [2.184775414778289]
We introduce setupbench, a benchmark that isolates the environment-bootstrap skill.<n>Our tasks span seven language ecosystems, five database engines, and multi-service orchestration scenarios.<n>We find low success rates across task categories, with particular challenges in repository setup (38.9-57.4%) and local database configuration (20.0-53.3%)
arXiv Detail & Related papers (2025-07-11T22:45:07Z) - CodeAgents: A Token-Efficient Framework for Codified Multi-Agent Reasoning in LLMs [16.234259194402163]
We introduce CodeAgents, a prompting framework that codifies multi-agent reasoning and enables structured, token-efficient planning in multi-agent systems.<n>Results show consistent improvements in planning performance, with absolute gains of 3-36 percentage points over natural language prompting baselines.
arXiv Detail & Related papers (2025-07-04T02:20:19Z) - SOP-Bench: Complex Industrial SOPs for Evaluating LLM Agents [16.08820954102608]
Large Language Models (LLMs) demonstrate impressive general-purpose reasoning and problem-solving abilities.<n>LLMs struggle with executing complex, long-horizon that demand strict adherence to Standard Operating Procedures.<n>We develop SOP-Bench, a benchmark of over 1,800 tasks across 10 industrial domains.
arXiv Detail & Related papers (2025-06-09T18:20:12Z) - ThinkGeo: Evaluating Tool-Augmented Agents for Remote Sensing Tasks [54.52092001110694]
ThinkGeo is a benchmark designed to evaluate tool-augmented agents on remote sensing tasks via structured tool use and multi-step planning.<n>Inspired by tool-interaction paradigms, ThinkGeo includes human-curated queries spanning a wide range of real-world applications.<n>Our analysis reveals notable disparities in tool accuracy and planning consistency across models.
arXiv Detail & Related papers (2025-05-29T17:59:38Z) - AGENTIF: Benchmarking Instruction Following of Large Language Models in Agentic Scenarios [51.46347732659174]
Large Language Models (LLMs) have demonstrated advanced capabilities in real-world agentic applications.<n>AgentIF is the first benchmark for systematically evaluating LLM instruction following ability in agentic scenarios.
arXiv Detail & Related papers (2025-05-22T17:31:10Z) - A Cooperative Multi-Agent Framework for Zero-Shot Named Entity Recognition [71.61103962200666]
Zero-shot named entity recognition (NER) aims to develop entity recognition systems from unannotated text corpora.<n>Recent work has adapted large language models (LLMs) for zero-shot NER by crafting specialized prompt templates.<n>We introduce the cooperative multi-agent system (CMAS), a novel framework for zero-shot NER.
arXiv Detail & Related papers (2025-02-25T23:30:43Z) - Interactive Agents to Overcome Ambiguity in Software Engineering [61.40183840499932]
AI agents are increasingly being deployed to automate tasks, often based on ambiguous and underspecified user instructions.<n>Making unwarranted assumptions and failing to ask clarifying questions can lead to suboptimal outcomes.<n>We study the ability of LLM agents to handle ambiguous instructions in interactive code generation settings by evaluating proprietary and open-weight models on their performance.
arXiv Detail & Related papers (2025-02-18T17:12:26Z) - AutoPT: How Far Are We from the End2End Automated Web Penetration Testing? [54.65079443902714]
We introduce AutoPT, an automated penetration testing agent based on the principle of PSM driven by LLMs.
Our results show that AutoPT outperforms the baseline framework ReAct on the GPT-4o mini model.
arXiv Detail & Related papers (2024-11-02T13:24:30Z) - Compromising Embodied Agents with Contextual Backdoor Attacks [69.71630408822767]
Large language models (LLMs) have transformed the development of embodied intelligence.
This paper uncovers a significant backdoor security threat within this process.
By poisoning just a few contextual demonstrations, attackers can covertly compromise the contextual environment of a black-box LLM.
arXiv Detail & Related papers (2024-08-06T01:20:12Z) - $τ$-bench: A Benchmark for Tool-Agent-User Interaction in Real-World Domains [43.43344028212623]
$tau$-bench is a benchmark emulating dynamic conversations between a user and a language agent.
We employ an efficient and faithful evaluation process that compares the database state at the end of a conversation with the annotated goal state.
arXiv Detail & Related papers (2024-06-17T19:33:08Z) - Enhancing Trust in Autonomous Agents: An Architecture for Accountability and Explainability through Blockchain and Large Language Models [0.3495246564946556]
This work presents an accountability and explainability architecture implemented for ROS-based mobile robots.<n>The proposed solution consists of two main components. Firstly, a black box-like element to provide accountability, featuring anti-tampering properties achieved through blockchain technology.<n> Secondly, a component in charge of generating natural language explanations by harnessing the capabilities of Large Language Models (LLMs) over the data contained within the previously mentioned black box.
arXiv Detail & Related papers (2024-03-14T16:57:18Z) - AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents [74.16170899755281]
We introduce AgentBoard, a pioneering comprehensive benchmark and accompanied open-source evaluation framework tailored to analytical evaluation of LLM agents.<n>AgentBoard offers a fine-grained progress rate metric that captures incremental advancements as well as a comprehensive evaluation toolkit.<n>This not only sheds light on the capabilities and limitations of LLM agents but also propels the interpretability of their performance to the forefront.
arXiv Detail & Related papers (2024-01-24T01:51:00Z) - Language Agent Tree Search Unifies Reasoning Acting and Planning in Language Models [31.509994889286183]
We introduce Language Agent Tree Search (LATS) -- the first general framework that synergizes the capabilities of language models (LMs) in reasoning, acting, and planning.
A key feature of our approach is the incorporation of an environment for external feedback, which offers a more deliberate and adaptive problem-solving mechanism.
LATS achieves state-of-the-art pass@1 accuracy (92.7%) for programming on HumanEval with GPT-4 and demonstrates gradient-free performance (average score of 75.9) comparable to gradient-based fine-tuning for web navigation on WebShop with GPT
arXiv Detail & Related papers (2023-10-06T17:55:11Z) - Reasoning or Reciting? Exploring the Capabilities and Limitations of Language Models Through Counterfactual Tasks [71.19560970717495]
Recent language models show impressive performance across a wide range of tasks.
Are these skills general and transferable, or specialized to specific tasks seen during pretraining?
We propose an evaluation framework based on "counterfactual" task variants that deviate from the default assumptions underlying standard tasks.
arXiv Detail & Related papers (2023-07-05T17:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.