Language-Depth Navigated Thermal and Visible Image Fusion
- URL: http://arxiv.org/abs/2503.08676v2
- Date: Sat, 12 Apr 2025 03:22:37 GMT
- Title: Language-Depth Navigated Thermal and Visible Image Fusion
- Authors: Jinchang Zhang, Zijun Li, Guoyu Lu,
- Abstract summary: Existing thermal-visible image fusion mainly focuses on detection tasks, ignoring other critical information such as depth.<n>We introduce a text-guided and depth-driven infrared and visible image fusion network.<n>This supports precise recognition and efficient operations in applications such as autonomous driving and rescue missions.
- Score: 11.473316170288166
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Depth-guided multimodal fusion combines depth information from visible and infrared images, significantly enhancing the performance of 3D reconstruction and robotics applications. Existing thermal-visible image fusion mainly focuses on detection tasks, ignoring other critical information such as depth. By addressing the limitations of single modalities in low-light and complex environments, the depth information from fused images not only generates more accurate point cloud data, improving the completeness and precision of 3D reconstruction, but also provides comprehensive scene understanding for robot navigation, localization, and environmental perception. This supports precise recognition and efficient operations in applications such as autonomous driving and rescue missions. We introduce a text-guided and depth-driven infrared and visible image fusion network. The model consists of an image fusion branch for extracting multi-channel complementary information through a diffusion model, equipped with a text-guided module, and two auxiliary depth estimation branches. The fusion branch uses CLIP to extract semantic information and parameters from depth-enriched image descriptions to guide the diffusion model in extracting multi-channel features and generating fused images. These fused images are then input into the depth estimation branches to calculate depth-driven loss, optimizing the image fusion network. This framework aims to integrate vision-language and depth to directly generate color-fused images from multimodal inputs.
Related papers
- DAF-Net: A Dual-Branch Feature Decomposition Fusion Network with Domain Adaptive for Infrared and Visible Image Fusion [21.64382683858586]
Infrared and visible image fusion aims to combine complementary information from both modalities to provide a more comprehensive scene understanding.
We propose a dual-branch feature decomposition fusion network (DAF-Net) with Maximum domain adaptive.
By incorporating MK-MMD, the DAF-Net effectively aligns the latent feature spaces of visible and infrared images, thereby improving the quality of the fused images.
arXiv Detail & Related papers (2024-09-18T02:14:08Z) - Depth-guided Texture Diffusion for Image Semantic Segmentation [47.46257473475867]
We introduce a Depth-guided Texture Diffusion approach that effectively tackles the outlined challenge.
Our method extracts low-level features from edges and textures to create a texture image.
By integrating this enriched depth map with the original RGB image into a joint feature embedding, our method effectively bridges the disparity between the depth map and the image.
arXiv Detail & Related papers (2024-08-17T04:55:03Z) - A Semantic-Aware and Multi-Guided Network for Infrared-Visible Image Fusion [41.34335755315773]
Multi-modality image fusion aims at fusing specific-modality and shared-modality information from two source images.
We propose a three-branch encoder-decoder architecture along with corresponding fusion layers as the fusion strategy.
Our method has obtained competitive results compared with state-of-the-art methods in visible/infrared image fusion and medical image fusion tasks.
arXiv Detail & Related papers (2024-06-11T09:32:40Z) - RigNet++: Semantic Assisted Repetitive Image Guided Network for Depth
Completion [31.70022495622075]
We explore a repetitive design in our image guided network to gradually and sufficiently recover depth values.
In the former branch, we design a dense repetitive hourglass network (DRHN) to extract discriminative image features of complex environments.
In the latter branch, we present a repetitive guidance (RG) module based on dynamic convolution, in which an efficient convolution factorization is proposed to reduce the complexity.
In addition, we propose a region-aware spatial propagation network (RASPN) for further depth refinement based on the semantic prior constraint.
arXiv Detail & Related papers (2023-09-01T09:11:20Z) - An Interactively Reinforced Paradigm for Joint Infrared-Visible Image
Fusion and Saliency Object Detection [59.02821429555375]
This research focuses on the discovery and localization of hidden objects in the wild and serves unmanned systems.
Through empirical analysis, infrared and visible image fusion (IVIF) enables hard-to-find objects apparent.
multimodal salient object detection (SOD) accurately delineates the precise spatial location of objects within the picture.
arXiv Detail & Related papers (2023-05-17T06:48:35Z) - CoCoNet: Coupled Contrastive Learning Network with Multi-level Feature Ensemble for Multi-modality Image Fusion [68.78897015832113]
We propose a coupled contrastive learning network, dubbed CoCoNet, to realize infrared and visible image fusion.<n>Our method achieves state-of-the-art (SOTA) performance under both subjective and objective evaluation.
arXiv Detail & Related papers (2022-11-20T12:02:07Z) - Joint Learning of Salient Object Detection, Depth Estimation and Contour
Extraction [91.43066633305662]
We propose a novel multi-task and multi-modal filtered transformer (MMFT) network for RGB-D salient object detection (SOD)
Specifically, we unify three complementary tasks: depth estimation, salient object detection and contour estimation. The multi-task mechanism promotes the model to learn the task-aware features from the auxiliary tasks.
Experiments show that it not only significantly surpasses the depth-based RGB-D SOD methods on multiple datasets, but also precisely predicts a high-quality depth map and salient contour at the same time.
arXiv Detail & Related papers (2022-03-09T17:20:18Z) - EPMF: Efficient Perception-aware Multi-sensor Fusion for 3D Semantic Segmentation [62.210091681352914]
We study multi-sensor fusion for 3D semantic segmentation for many applications, such as autonomous driving and robotics.
In this work, we investigate a collaborative fusion scheme called perception-aware multi-sensor fusion (PMF)
We propose a two-stream network to extract features from the two modalities separately. The extracted features are fused by effective residual-based fusion modules.
arXiv Detail & Related papers (2021-06-21T10:47:26Z) - Volumetric Propagation Network: Stereo-LiDAR Fusion for Long-Range Depth
Estimation [81.08111209632501]
We propose a geometry-aware stereo-LiDAR fusion network for long-range depth estimation.
We exploit sparse and accurate point clouds as a cue for guiding correspondences of stereo images in a unified 3D volume space.
Our network achieves state-of-the-art performance on the KITTI and the Virtual- KITTI datasets.
arXiv Detail & Related papers (2021-03-24T03:24:46Z) - A Single Stream Network for Robust and Real-time RGB-D Salient Object
Detection [89.88222217065858]
We design a single stream network to use the depth map to guide early fusion and middle fusion between RGB and depth.
This model is 55.5% lighter than the current lightest model and runs at a real-time speed of 32 FPS when processing a $384 times 384$ image.
arXiv Detail & Related papers (2020-07-14T04:40:14Z) - Deep Convolutional Sparse Coding Networks for Image Fusion [29.405149234582623]
Deep learning has emerged as an important tool for image fusion.
This paper presents three deep convolutional sparse coding (CSC) networks for three kinds of image fusion tasks.
arXiv Detail & Related papers (2020-05-18T04:12:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.