Self-Taught Self-Correction for Small Language Models
- URL: http://arxiv.org/abs/2503.08681v1
- Date: Tue, 11 Mar 2025 17:57:44 GMT
- Title: Self-Taught Self-Correction for Small Language Models
- Authors: Viktor Moskvoretskii, Chris Biemann, Irina Nikishina,
- Abstract summary: This work explores self-correction in small language models (SLMs) through iterative fine-tuning using solely self-generated data.<n>We introduce the Self-Taught Self-Correction (STaSC) algorithm, which incorporates multiple algorithmic design choices.<n> Experimental results on a question-answering task demonstrate that STaSC effectively learns self-correction, leading to significant performance improvements.
- Score: 16.450874155791308
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Although large language models (LLMs) have achieved remarkable performance across various tasks, they remain prone to errors. A key challenge is enabling them to self-correct. While prior research has relied on external tools or large proprietary models, this work explores self-correction in small language models (SLMs) through iterative fine-tuning using solely self-generated data. We introduce the Self-Taught Self-Correction (STaSC) algorithm, which incorporates multiple algorithmic design choices. Experimental results on a question-answering task demonstrate that STaSC effectively learns self-correction, leading to significant performance improvements. Our analysis further provides insights into the mechanisms of self-correction and the impact of different design choices on learning dynamics and overall performance. To support future research, we release our user-friendly codebase and lightweight models.
Related papers
- ToolACE-R: Tool Learning with Adaptive Self-Refinement [84.69651852838794]
Tool learning allows Large Language Models to leverage external tools for solving complex user tasks.
We propose ToolACE-R, a novel method that introduces adaptive self-refinement for tool invocations.
Our results demonstrate the effectiveness of the proposed method, which is compatible with base models of various sizes.
arXiv Detail & Related papers (2025-04-02T06:38:56Z) - Iterative Deepening Sampling for Large Language Models [27.807695570974644]
Training models to achieve effective self-correction and self-correction remains a significant challenge.<n>We propose a novel iterative sampling algorithm framework designed to enhance self-correction and generate higher-quality samples.
arXiv Detail & Related papers (2025-02-08T04:39:51Z) - Mind the Gap: Examining the Self-Improvement Capabilities of Large Language Models [10.449015816015566]
Self-improvement is a mechanism in Large Language Model (LLM) pre-training, post-training and test-time inference.<n>We provide a mathematical formulation for self-improvement, which is largely governed by a quantity which we formalize as the generation-verification gap.<n>We also examine when self-improvement is possible, an iterative self-improvement procedure, and ways to improve its performance.
arXiv Detail & Related papers (2024-12-03T18:47:26Z) - Self-Improvement in Language Models: The Sharpening Mechanism [70.9248553790022]
We offer a new perspective on the capabilities of self-improvement through a lens we refer to as sharpening.<n>Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training.<n>We analyze two natural families of self-improvement algorithms based on SFT and RLHF.
arXiv Detail & Related papers (2024-12-02T20:24:17Z) - Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision [120.40788744292739]
We propose a two-player paradigm that separates the roles of reasoning and critique models.
We first propose AutoMathCritique, an automated and scalable framework for collecting critique data.
We demonstrate that the critique models consistently improve the actor's performance on difficult queries at test-time.
arXiv Detail & Related papers (2024-11-25T17:11:54Z) - Self-Correction is More than Refinement: A Learning Framework for Visual and Language Reasoning Tasks [43.96835245022083]
Self-correction that instructs models to refine their outputs presents a promising solution to this issue.
This study investigates the self-correction capabilities of Vision-Language Models during both inference and fine-tuning stages.
arXiv Detail & Related papers (2024-10-05T06:28:54Z) - Training Language Models to Self-Correct via Reinforcement Learning [98.35197671595343]
Self-correction has been found to be largely ineffective in modern large language models (LLMs)
We develop a multi-turn online reinforcement learning approach, SCoRe, that significantly improves an LLM's self-correction ability using entirely self-generated data.
We find that SCoRe achieves state-of-the-art self-correction performance, improving the base models' self-correction by 15.6% and 9.1% respectively on MATH and HumanEval.
arXiv Detail & Related papers (2024-09-19T17:16:21Z) - Small Language Models Need Strong Verifiers to Self-Correct Reasoning [69.94251699982388]
Self-correction has emerged as a promising solution to boost the reasoning performance of large language models (LLMs)
This work explores whether small (= 13B) language models (LMs) have the ability of self-correction on reasoning tasks with minimal inputs from stronger LMs.
arXiv Detail & Related papers (2024-04-26T03:41:28Z) - Fine-Tuning Enhances Existing Mechanisms: A Case Study on Entity
Tracking [53.66999416757543]
We study how fine-tuning affects the internal mechanisms implemented in language models.
Fine-tuning enhances, rather than alters, the mechanistic operation of the model.
arXiv Detail & Related papers (2024-02-22T18:59:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.