Real-Time Semantic Segmentation of Aerial Images Using an Embedded U-Net: A Comparison of CPU, GPU, and FPGA Workflows
- URL: http://arxiv.org/abs/2503.08700v1
- Date: Fri, 07 Mar 2025 08:33:28 GMT
- Title: Real-Time Semantic Segmentation of Aerial Images Using an Embedded U-Net: A Comparison of CPU, GPU, and FPGA Workflows
- Authors: Julien Posso, Hugo Kieffer, Nicolas Menga, Omar Hlimi, Sébastien Tarris, Hubert Guerard, Guy Bois, Matthieu Couderc, Eric Jenn,
- Abstract summary: This study introduces a lightweight U-Net model optimized for real-time semantic segmentation of aerial images.<n>We maintain the accuracy of the U-Net on a real-world dataset while significantly reducing the model's parameters and Multiply-Accumulate (MAC) operations by a factor of 16.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study introduces a lightweight U-Net model optimized for real-time semantic segmentation of aerial images, targeting the efficient utilization of Commercial Off-The-Shelf (COTS) embedded computing platforms. We maintain the accuracy of the U-Net on a real-world dataset while significantly reducing the model's parameters and Multiply-Accumulate (MAC) operations by a factor of 16. Our comprehensive analysis covers three hardware platforms (CPU, GPU, and FPGA) and five different toolchains (TVM, FINN, Vitis AI, TensorFlow GPU, and cuDNN), assessing each on metrics such as latency, power consumption, memory footprint, energy efficiency, and FPGA resource usage. The results highlight the trade-offs between these platforms and toolchains, with a particular focus on the practical deployment challenges in real-world applications. Our findings demonstrate that while the FPGA with Vitis AI emerges as the superior choice due to its performance, energy efficiency, and maturity, it requires specialized hardware knowledge, emphasizing the need for a balanced approach in selecting embedded computing solutions for semantic segmentation tasks
Related papers
- ContextFormer: Redefining Efficiency in Semantic Segmentation [48.81126061219231]
Convolutional methods, although capturing local dependencies well, struggle with long-range relationships.<n>Vision Transformers (ViTs) excel in global context capture but are hindered by high computational demands.<n>We propose ContextFormer, a hybrid framework leveraging the strengths of CNNs and ViTs in the bottleneck to balance efficiency, accuracy, and robustness for real-time semantic segmentation.
arXiv Detail & Related papers (2025-01-31T16:11:04Z) - Event-based vision on FPGAs -- a survey [0.0]
Field programmable gate Arrays (FPGAs) have enabled fast data processing (even in real-time) and energy efficiency.
This paper gives an overview of the most important works, where FPGAs have been used in different contexts to process event data.
It covers applications in the following areas: filtering, stereovision, optical flow, acceleration of AI-based algorithms for object classification, detection and tracking, and applications in robotics and inspection systems.
arXiv Detail & Related papers (2024-07-11T10:07:44Z) - Enhancing Dropout-based Bayesian Neural Networks with Multi-Exit on FPGA [20.629635991749808]
This paper proposes an algorithm and hardware co-design framework that can generate field-programmable gate array (FPGA)-based accelerators for efficient BayesNNs.
At the algorithm level, we propose novel multi-exit dropout-based BayesNNs with reduced computational and memory overheads.
At the hardware level, this paper introduces a transformation framework that can generate FPGA-based accelerators for the proposed efficient BayesNNs.
arXiv Detail & Related papers (2024-06-20T17:08:42Z) - ParaGraph: Weighted Graph Representation for Performance Optimization of
HPC Kernels [1.304892050913381]
We introduce a new graph-based program representation for parallel applications that extends the Abstract Syntax Tree.
We evaluate our proposed representation by training a Graph Neural Network (GNN) to predict the runtime of an OpenMP code region.
Results show that our approach is indeed effective and has normalized RMSE as low as 0.004 to at most 0.01 in its runtime predictions.
arXiv Detail & Related papers (2023-04-07T05:52:59Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - RTFormer: Efficient Design for Real-Time Semantic Segmentation with
Transformer [63.25665813125223]
We propose RTFormer, an efficient dual-resolution transformer for real-time semantic segmenation.
It achieves better trade-off between performance and efficiency than CNN-based models.
Experiments on mainstream benchmarks demonstrate the effectiveness of our proposed RTFormer.
arXiv Detail & Related papers (2022-10-13T16:03:53Z) - Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark [11.575901540758574]
We present our development experience for the Tiny Inference Benchmark on field-programmable gate array (FPGA) platforms.
We use the open-source hls4ml and FINN perJ, which aim to democratize AI- hardware codesign of optimized neural networks on FPGAs.
The solutions are deployed on system-on-chip (Pynq-Z2) and pure FPGA (Arty A7-100T) platforms.
arXiv Detail & Related papers (2022-06-23T15:57:17Z) - Towards Optimal VPU Compiler Cost Modeling by using Neural Networks to
Infer Hardware Performances [58.720142291102135]
'VPUNN' is a neural network-based cost model trained on low-level task profiling.
It consistently outperforms the state-of-the-art cost modeling in Intel's line of VPU processors.
arXiv Detail & Related papers (2022-05-09T22:48:39Z) - FPGA-based AI Smart NICs for Scalable Distributed AI Training Systems [62.20308752994373]
We propose a new smart network interface card (NIC) for distributed AI training systems using field-programmable gate arrays (FPGAs)
Our proposed FPGA-based AI smart NIC enhances overall training performance by 1.6x at 6 nodes, with an estimated 2.5x performance improvement at 32 nodes, compared to the baseline system using conventional NICs.
arXiv Detail & Related papers (2022-04-22T21:57:00Z) - Hardware-Efficient Deconvolution-Based GAN for Edge Computing [1.5229257192293197]
Generative Adversarial Networks (GAN) are cutting-edge algorithms for generating new data samples based on the learned data distribution.
We proposed an HW/SW co-design approach for training quantized deconvolution GAN (QDCGAN) implemented on FPGA using a scalable streaming dataflow architecture.
Various precisions, datasets, and network scalability were analyzed for low-power inference on resource-constrained platforms.
arXiv Detail & Related papers (2022-01-18T11:16:59Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.