Neural Network for Blind Unmixing: a novel MatrixConv Unmixing (MCU) Approach
- URL: http://arxiv.org/abs/2503.08745v1
- Date: Tue, 11 Mar 2025 09:41:57 GMT
- Title: Neural Network for Blind Unmixing: a novel MatrixConv Unmixing (MCU) Approach
- Authors: Chao Zhou, Wei Pu, Miguel Rodrigues,
- Abstract summary: Hyperspectral image (HSI) unmixing is a challenging research problem.<n>We propose a MatrixConv Unmixing (MCU) approach for endmember and abundance estimation.<n>The proposed methods are tested for effectiveness on both synthetic and real datasets.
- Score: 13.857076242271669
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperspectral image (HSI) unmixing is a challenging research problem that tries to identify the constituent components, known as endmembers, and their corresponding proportions, known as abundances, in the scene by analysing images captured by hyperspectral cameras. Recently, many deep learning based unmixing approaches have been proposed with the surge of machine learning techniques, especially convolutional neural networks (CNN). However, these methods face two notable challenges: 1. They frequently yield results lacking physical significance, such as signatures corresponding to unknown or non-existent materials. 2. CNNs, as general-purpose network structures, are not explicitly tailored for unmixing tasks. In response to these concerns, our work draws inspiration from double deep image prior (DIP) techniques and algorithm unrolling, presenting a novel network structure that effectively addresses both issues. Specifically, we first propose a MatrixConv Unmixing (MCU) approach for endmember and abundance estimation, respectively, which can be solved via certain iterative solvers. We then unroll these solvers to build two sub-networks, endmember estimation DIP (UEDIP) and abundance estimation DIP (UADIP), to generate the estimation of endmember and abundance, respectively. The overall network is constructed by assembling these two sub-networks. In order to generate meaningful unmixing results, we also propose a composite loss function. To further improve the unmixing quality, we also add explicitly a regularizer for endmember and abundance estimation, respectively. The proposed methods are tested for effectiveness on both synthetic and real datasets.
Related papers
- A Multi-objective Complex Network Pruning Framework Based on
Divide-and-conquer and Global Performance Impairment Ranking [40.59001171151929]
A multi-objective complex network pruning framework based on divide-and-conquer and global performance impairment ranking is proposed in this paper.
The proposed algorithm achieves a comparable performance with the state-of-the-art pruning methods.
arXiv Detail & Related papers (2023-03-28T12:05:15Z) - Learning to Detect Critical Nodes in Sparse Graphs via Feature Importance Awareness [53.351863569314794]
The critical node problem (CNP) aims to find a set of critical nodes from a network whose deletion maximally degrades the pairwise connectivity of the residual network.
This work proposes a feature importance-aware graph attention network for node representation.
It combines it with dueling double deep Q-network to create an end-to-end algorithm to solve CNP for the first time.
arXiv Detail & Related papers (2021-12-03T14:23:05Z) - Endmember-Guided Unmixing Network (EGU-Net): A General Deep Learning
Framework for Self-Supervised Hyperspectral Unmixing [39.432539302311476]
We develop a general deep learning approach for hyperspectral unmixing, called endmember-guided unmixing network (EGU-Net)
EGU-Net is a two-stream Siamese deep network, which learns an additional network from the pure or nearly-pure endmembers to correct the weights of another unmixing network.
The resulting general framework is not only limited to pixel-wise spectral unmixing but also applicable to spatial information modeling with convolutional operators for spatial-spectral unmixing.
arXiv Detail & Related papers (2021-05-21T08:07:12Z) - Hierarchical Convolutional Neural Network with Feature Preservation and
Autotuned Thresholding for Crack Detection [5.735035463793008]
Drone imagery is increasingly used in automated inspection for infrastructure surface defects.
This paper proposes a deep learning approach using hierarchical convolutional neural networks with feature preservation.
The proposed technique is then applied to identify surface cracks on the surface of roads, bridges or pavements.
arXiv Detail & Related papers (2021-04-21T13:07:58Z) - Decoupled and Memory-Reinforced Networks: Towards Effective Feature
Learning for One-Step Person Search [65.51181219410763]
One-step methods have been developed to handle pedestrian detection and identification sub-tasks using a single network.
There are two major challenges in the current one-step approaches.
We propose a decoupled and memory-reinforced network (DMRNet) to overcome these problems.
arXiv Detail & Related papers (2021-02-22T06:19:45Z) - SOSD-Net: Joint Semantic Object Segmentation and Depth Estimation from
Monocular images [94.36401543589523]
We introduce the concept of semantic objectness to exploit the geometric relationship of these two tasks.
We then propose a Semantic Object and Depth Estimation Network (SOSD-Net) based on the objectness assumption.
To the best of our knowledge, SOSD-Net is the first network that exploits the geometry constraint for simultaneous monocular depth estimation and semantic segmentation.
arXiv Detail & Related papers (2021-01-19T02:41:03Z) - ESPN: Extremely Sparse Pruned Networks [50.436905934791035]
We show that a simple iterative mask discovery method can achieve state-of-the-art compression of very deep networks.
Our algorithm represents a hybrid approach between single shot network pruning methods and Lottery-Ticket type approaches.
arXiv Detail & Related papers (2020-06-28T23:09:27Z) - Hyperspectral Unmixing Network Inspired by Unfolding an Optimization
Problem [2.4016406737205753]
The hyperspectral image (HSI) unmixing task is essentially an inverse problem, which is commonly solved by optimization algorithms.
We propose two novel network architectures, named U-ADMM-AENet and U-ADMM-BUNet, for abundance estimation and blind unmixing.
We show that the unfolded structures can find corresponding interpretations in machine learning literature, which further demonstrates the effectiveness of proposed methods.
arXiv Detail & Related papers (2020-05-21T18:49:45Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
We train a graph convolutional network to fit the performance of sampled sub-networks.
With this strategy, we achieve a higher rank correlation coefficient in the selected set of candidates.
arXiv Detail & Related papers (2020-04-17T19:12:39Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.