Cross-Examiner: Evaluating Consistency of Large Language Model-Generated Explanations
- URL: http://arxiv.org/abs/2503.08815v1
- Date: Tue, 11 Mar 2025 18:50:43 GMT
- Title: Cross-Examiner: Evaluating Consistency of Large Language Model-Generated Explanations
- Authors: Danielle Villa, Maria Chang, Keerthiram Murugesan, Rosario Uceda-Sosa, Karthikeyan Natesan Ramamurthy,
- Abstract summary: Large Language Models (LLMs) are often asked to explain their outputs to enhance accuracy and transparency.<n>Evidence suggests that these explanations can misrepresent the models' true reasoning processes.<n>This paper introduces, cross-examiner, a new method for generating follow-up questions based on a model's explanation of an initial question.
- Score: 12.615208274851152
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large Language Models (LLMs) are often asked to explain their outputs to enhance accuracy and transparency. However, evidence suggests that these explanations can misrepresent the models' true reasoning processes. One effective way to identify inaccuracies or omissions in these explanations is through consistency checking, which typically involves asking follow-up questions. This paper introduces, cross-examiner, a new method for generating follow-up questions based on a model's explanation of an initial question. Our method combines symbolic information extraction with language model-driven question generation, resulting in better follow-up questions than those produced by LLMs alone. Additionally, this approach is more flexible than other methods and can generate a wider variety of follow-up questions.
Related papers
- Explain-Query-Test: Self-Evaluating LLMs Via Explanation and Comprehension Discrepancy [3.0429215246859465]
Large language models (LLMs) have demonstrated remarkable proficiency in generating detailed and coherent explanations.<n>To assess the level of comprehension of a model relative to the content it generates, we implemented a self-evaluation pipeline.<n>We refer to this self-evaluation approach as Explain-Query-Test (EQT)
arXiv Detail & Related papers (2025-01-20T20:07:18Z) - Evaluating the Reliability of Self-Explanations in Large Language Models [2.8894038270224867]
We evaluate two kinds of such self-explanations - extractive and counterfactual.<n>Our findings reveal, that, while these self-explanations can correlate with human judgement, they do not fully and accurately follow the model's decision process.<n>We show that this gap can be bridged because prompting LLMs for counterfactual explanations can produce faithful, informative, and easy-to-verify results.
arXiv Detail & Related papers (2024-07-19T17:41:08Z) - FaithLM: Towards Faithful Explanations for Large Language Models [67.29893340289779]
Large Language Models (LLMs) have become proficient in addressing complex tasks by leveraging their internal knowledge and reasoning capabilities.
The black-box nature of these models complicates the task of explaining their decision-making processes.
We introduce FaithLM to explain the decision of LLMs with natural language (NL) explanations.
arXiv Detail & Related papers (2024-02-07T09:09:14Z) - Towards More Faithful Natural Language Explanation Using Multi-Level
Contrastive Learning in VQA [7.141288053123662]
Natural language explanation in visual question answer (VQA-NLE) aims to explain the decision-making process of models by generating natural language sentences to increase users' trust in the black-box systems.
Existing post-hoc explanations are not always aligned with human logical inference, suffering from the issues on: 1) Deductive unsatisfiability, the generated explanations do not logically lead to the answer; 2) Factual inconsistency, the model falsifies its counterfactual explanation for answers without considering the facts in images; and 3) Semantic perturbation insensitivity, the model can not recognize the semantic changes caused by small perturbations
arXiv Detail & Related papers (2023-12-21T05:51:55Z) - Large Language Models as Analogical Reasoners [155.9617224350088]
Chain-of-thought (CoT) prompting for language models demonstrates impressive performance across reasoning tasks.
We introduce a new prompting approach, analogical prompting, designed to automatically guide the reasoning process of large language models.
arXiv Detail & Related papers (2023-10-03T00:57:26Z) - Towards LLM-guided Causal Explainability for Black-box Text Classifiers [16.36602400590088]
We aim to leverage the instruction-following and textual understanding capabilities of recent Large Language Models to facilitate causal explainability.
We propose a three-step pipeline via which, we use an off-the-shelf LLM to identify the latent or unobserved features in the input text.
We experiment with our pipeline on multiple NLP text classification datasets, and present interesting and promising findings.
arXiv Detail & Related papers (2023-09-23T11:22:28Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - An Empirical Comparison of LM-based Question and Answer Generation
Methods [79.31199020420827]
Question and answer generation (QAG) consists of generating a set of question-answer pairs given a context.
In this paper, we establish baselines with three different QAG methodologies that leverage sequence-to-sequence language model (LM) fine-tuning.
Experiments show that an end-to-end QAG model, which is computationally light at both training and inference times, is generally robust and outperforms other more convoluted approaches.
arXiv Detail & Related papers (2023-05-26T14:59:53Z) - STREET: A Multi-Task Structured Reasoning and Explanation Benchmark [56.555662318619135]
We introduce a unified multi-task and multi-domain natural language reasoning and explanation benchmark.
We expect models to not only answer questions, but also produce step-by-step structured explanations describing how premises in the question are used to produce intermediate conclusions that can prove the correctness of a certain answer.
arXiv Detail & Related papers (2023-02-13T22:34:02Z) - Synthetic Prompting: Generating Chain-of-Thought Demonstrations for
Large Language Models [121.54462976635743]
Large language models can perform various reasoning tasks by using chain-of-thought prompting, which guides them to find answers through step-by-step demonstrations.
We introduce Synthetic prompting, a method that leverages a few handcrafted examples to prompt the model to generate more examples by itself.
We evaluate our method on numerical, symbolic, and algorithmic reasoning tasks, and show that it outperforms existing prompting techniques.
arXiv Detail & Related papers (2023-02-01T17:33:12Z) - Discrete Reasoning Templates for Natural Language Understanding [79.07883990966077]
We present an approach that reasons about complex questions by decomposing them to simpler subquestions.
We derive the final answer according to instructions in a predefined reasoning template.
We show that our approach is competitive with the state-of-the-art while being interpretable and requires little supervision.
arXiv Detail & Related papers (2021-04-05T18:56:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.