Learning Pareto manifolds in high dimensions: How can regularization help?
- URL: http://arxiv.org/abs/2503.08849v1
- Date: Tue, 11 Mar 2025 19:38:06 GMT
- Title: Learning Pareto manifolds in high dimensions: How can regularization help?
- Authors: Tobias Wegel, Filip Kovačević, Alexandru Ţifrea, Fanny Yang,
- Abstract summary: We discuss how the application of vanilla regularization approaches can fail, and propose a two-stage MOL framework that can successfully leverage low-dimensional structure.<n>We demonstrate its effectiveness experimentally for multi-distribution learning and fairness-risk trade-offs.
- Score: 48.23440259626247
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simultaneously addressing multiple objectives is becoming increasingly important in modern machine learning. At the same time, data is often high-dimensional and costly to label. For a single objective such as prediction risk, conventional regularization techniques are known to improve generalization when the data exhibits low-dimensional structure like sparsity. However, it is largely unexplored how to leverage this structure in the context of multi-objective learning (MOL) with multiple competing objectives. In this work, we discuss how the application of vanilla regularization approaches can fail, and propose a two-stage MOL framework that can successfully leverage low-dimensional structure. We demonstrate its effectiveness experimentally for multi-distribution learning and fairness-risk trade-offs.
Related papers
- Continual Multimodal Contrastive Learning [70.60542106731813]
Multimodal contrastive learning (MCL) advances in aligning different modalities and generating multimodal representations in a joint space.
However, a critical yet often overlooked challenge remains: multimodal data is rarely collected in a single process, and training from scratch is computationally expensive.
In this paper, we formulate CMCL through two specialized principles of stability and plasticity.
We theoretically derive a novel optimization-based method, which projects updated gradients from dual sides onto subspaces where any gradient is prevented from interfering with the previously learned knowledge.
arXiv Detail & Related papers (2025-03-19T07:57:08Z) - Rethinking Multi-Objective Learning through Goal-Conditioned Supervised Learning [8.593384839118658]
Multi-objective learning aims to optimize multiple objectives simultaneously with a single model.<n>It suffers from the difficulty to formalize and conduct the exact learning process.<n>We propose a general framework for automatically learning to achieve multiple objectives based on the existing sequential data.
arXiv Detail & Related papers (2024-12-12T03:47:40Z) - Beyond Unimodal Learning: The Importance of Integrating Multiple Modalities for Lifelong Learning [23.035725779568587]
We study the role and interactions of multiple modalities in mitigating forgetting in deep neural networks (DNNs)
Our findings demonstrate that leveraging multiple views and complementary information from multiple modalities enables the model to learn more accurate and robust representations.
We propose a method for integrating and aligning the information from different modalities by utilizing the relational structural similarities between the data points in each modality.
arXiv Detail & Related papers (2024-05-04T22:02:58Z) - Recognizing Unseen Objects via Multimodal Intensive Knowledge Graph
Propagation [68.13453771001522]
We propose a multimodal intensive ZSL framework that matches regions of images with corresponding semantic embeddings.
We conduct extensive experiments and evaluate our model on large-scale real-world data.
arXiv Detail & Related papers (2023-06-14T13:07:48Z) - Learning Transferable Adversarial Robust Representations via Multi-view
Consistency [57.73073964318167]
We propose a novel meta-adversarial multi-view representation learning framework with dual encoders.
We demonstrate the effectiveness of our framework on few-shot learning tasks from unseen domains.
arXiv Detail & Related papers (2022-10-19T11:48:01Z) - Generalization In Multi-Objective Machine Learning [27.806085423595334]
Multi-objective learning offers a natural framework for handling such problems without having to commit to early trade-offs.
statistical learning theory so far offers almost no insight into the generalization properties of multi-objective learning.
arXiv Detail & Related papers (2022-08-29T11:06:39Z) - Guided Deep Metric Learning [0.9786690381850356]
We propose a novel approach to DML that we call Guided Deep Metric Learning.
The proposed method is capable of a better manifold generalization and representation to up to 40% improvement.
arXiv Detail & Related papers (2022-06-04T17:34:11Z) - Understanding the World Through Action [91.3755431537592]
I will argue that a general, principled, and powerful framework for utilizing unlabeled data can be derived from reinforcement learning.
I will discuss how such a procedure is more closely aligned with potential downstream tasks.
arXiv Detail & Related papers (2021-10-24T22:33:52Z) - Provable Multi-Objective Reinforcement Learning with Generative Models [98.19879408649848]
We study the problem of single policy MORL, which learns an optimal policy given the preference of objectives.
Existing methods require strong assumptions such as exact knowledge of the multi-objective decision process.
We propose a new algorithm called model-based envelop value (EVI) which generalizes the enveloped multi-objective $Q$-learning algorithm.
arXiv Detail & Related papers (2020-11-19T22:35:31Z) - Learning From Multiple Experts: Self-paced Knowledge Distillation for
Long-tailed Classification [106.08067870620218]
We propose a self-paced knowledge distillation framework, termed Learning From Multiple Experts (LFME)
We refer to these models as 'Experts', and the proposed LFME framework aggregates the knowledge from multiple 'Experts' to learn a unified student model.
We conduct extensive experiments and demonstrate that our method is able to achieve superior performances compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-01-06T12:57:36Z) - Multi-Objective Genetic Programming for Manifold Learning: Balancing
Quality and Dimensionality [4.4181317696554325]
State-of-the-art manifold learning algorithms are opaque in how they perform this transformation.
We introduce a multi-objective approach that automatically balances the competing objectives of manifold quality and dimensionality.
Our proposed approach is competitive with a range of baseline and state-of-the-art manifold learning methods.
arXiv Detail & Related papers (2020-01-05T23:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.