Extragradient Preference Optimization (EGPO): Beyond Last-Iterate Convergence for Nash Learning from Human Feedback
- URL: http://arxiv.org/abs/2503.08942v1
- Date: Tue, 11 Mar 2025 22:44:54 GMT
- Title: Extragradient Preference Optimization (EGPO): Beyond Last-Iterate Convergence for Nash Learning from Human Feedback
- Authors: Runlong Zhou, Maryam Fazel, Simon S. Du,
- Abstract summary: Extragradient preference optimization (EGPO) is an algorithm for NLHF achieving last-iterate linear convergence to the NE of KL-regularized games.<n>Our empirical evaluations demonstrate EGPO's superior performance over baseline methods when training for the same number of epochs.
- Score: 46.7385883375784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning from human feedback (RLHF) has become essential for improving language model capabilities, but traditional approaches rely on the assumption that human preferences follow a transitive Bradley-Terry model. This assumption fails to capture the non-transitive nature of populational human preferences. Nash learning from human feedback (NLHF), targeting non-transitive preferences, is a problem of computing the Nash equilibrium (NE) of the two-player constant-sum game defined by the human preference. We introduce Extragradient preference optimization (EGPO), a novel algorithm for NLHF achieving last-iterate linear convergence to the NE of KL-regularized games and polynomial convergence to the NE of original games, while being robust to noise. Unlike previous approaches that rely on nested optimization, we derive an equivalent implementation using gradients of an online variant of the identity preference optimization (IPO) loss, enabling more faithful implementation for neural networks. Our empirical evaluations demonstrate EGPO's superior performance over baseline methods when training for the same number of epochs, as measured by pairwise win-rates using the ground truth preference. These results validate both the theoretical strengths and practical advantages of EGPO for language model alignment with non-transitive human preferences.
Related papers
- Active Human Feedback Collection via Neural Contextual Dueling Bandits [84.7608942821423]
We propose Neural-ADB, an algorithm for collecting human preference feedback when the underlying latent reward function is non-linear.
We show that when preference feedback follows the Bradley-Terry-Luce model, the worst sub-optimality gap of the policy learned by Neural-ADB decreases at a sub-linear rate as the preference dataset increases.
arXiv Detail & Related papers (2025-04-16T12:16:10Z) - PILAF: Optimal Human Preference Sampling for Reward Modeling [14.336058926701432]
We propose Policy-Interpolated Learning for Aligned Feedback (PILAF), a novel response sampling strategy for preference labeling.<n>PILAF explicitly aligns preference learning with maximizing the underlying oracle reward.
arXiv Detail & Related papers (2025-02-06T18:09:00Z) - Ordinal Preference Optimization: Aligning Human Preferences via NDCG [28.745322441961438]
We develop an end-to-end preference optimization algorithm by approxing NDCG with a differentiable surrogate loss.
OPO outperforms existing pairwise and listwise approaches on evaluation sets and general benchmarks like AlpacaEval.
arXiv Detail & Related papers (2024-10-06T03:49:28Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - Inverse-Q*: Token Level Reinforcement Learning for Aligning Large Language Models Without Preference Data [25.844968873581244]
Inverse-Q* is an innovative framework that transcends traditional RL methods by optimizing token-level reinforcement learning.
Our results suggest that Inverse-Q* offers a practical and robust alternative to conventional RLHF approaches.
arXiv Detail & Related papers (2024-08-27T08:43:32Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.
To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.
Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - MaxMin-RLHF: Alignment with Diverse Human Preferences [101.57443597426374]
Reinforcement Learning from Human Feedback (RLHF) aligns language models to human preferences by employing a singular reward model derived from preference data.
We learn a mixture of preference distributions via an expectation-maximization algorithm to better represent diverse human preferences.
Our algorithm achieves an average improvement of more than 16% in win-rates over conventional RLHF algorithms.
arXiv Detail & Related papers (2024-02-14T03:56:27Z) - Online Iterative Reinforcement Learning from Human Feedback with General Preference Model [20.81421550138371]
We investigate Reinforcement Learning from Human Feedback (RLHF) in the context of a general preference oracle.
We consider a standard mathematical formulation, the reverse-KL regularized minimax game between two LLMs for RLHF under general preference oracle.
We show that this framework is strictly more general than the reward-based one, and propose sample-efficient algorithms for both the offline learning from a pre-collected preference dataset and online learning.
arXiv Detail & Related papers (2024-02-11T21:44:21Z) - Nash Learning from Human Feedback [86.09617990412941]
We introduce an alternative pipeline for the fine-tuning of large language models using pairwise human feedback.
We term this approach Nash learning from human feedback (NLHF)
We present a novel algorithmic solution, Nash-MD, founded on the principles of mirror descent.
arXiv Detail & Related papers (2023-12-01T19:26:23Z) - Contrastive Preference Learning: Learning from Human Feedback without RL [71.77024922527642]
We introduce Contrastive Preference Learning (CPL), an algorithm for learning optimal policies from preferences without learning reward functions.
CPL is fully off-policy, uses only a simple contrastive objective, and can be applied to arbitrary MDPs.
arXiv Detail & Related papers (2023-10-20T16:37:56Z) - Statistical Rejection Sampling Improves Preference Optimization [42.57245965632205]
We introduce a novel approach to source preference data from the target optimal policy using rejection sampling.
We also propose a unified framework that enhances the loss functions used in both Sequence Likelihood (SLiC) and Direct Preference Optimization (DPO) from a preference modeling standpoint.
arXiv Detail & Related papers (2023-09-13T01:07:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.