Agentic AI for Scientific Discovery: A Survey of Progress, Challenges, and Future Directions
- URL: http://arxiv.org/abs/2503.08979v1
- Date: Wed, 12 Mar 2025 01:00:05 GMT
- Title: Agentic AI for Scientific Discovery: A Survey of Progress, Challenges, and Future Directions
- Authors: Mourad Gridach, Jay Nanavati, Khaldoun Zine El Abidine, Lenon Mendes, Christina Mack,
- Abstract summary: Agentic AI systems are capable of reasoning, planning, and autonomous decision-making.<n>They are transforming how scientists perform literature review, generate hypotheses, conduct experiments, and analyze results.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of Agentic AI into scientific discovery marks a new frontier in research automation. These AI systems, capable of reasoning, planning, and autonomous decision-making, are transforming how scientists perform literature review, generate hypotheses, conduct experiments, and analyze results. This survey provides a comprehensive overview of Agentic AI for scientific discovery, categorizing existing systems and tools, and highlighting recent progress across fields such as chemistry, biology, and materials science. We discuss key evaluation metrics, implementation frameworks, and commonly used datasets to offer a detailed understanding of the current state of the field. Finally, we address critical challenges, such as literature review automation, system reliability, and ethical concerns, while outlining future research directions that emphasize human-AI collaboration and enhanced system calibration.
Related papers
- SciSciGPT: Advancing Human-AI Collaboration in the Science of Science [7.592219145267612]
Recent advances in large language models (LLMs) and AI agents have opened new possibilities for human-AI collaboration.
We introduce SciSciGPT, an open-source, prototype AI collaborator that uses the science of science as a testbed to explore the potential of LLM-powered research tools.
arXiv Detail & Related papers (2025-04-07T23:19:39Z) - Scaling Laws in Scientific Discovery with AI and Robot Scientists [72.3420699173245]
An autonomous generalist scientist (AGS) concept combines agentic AI and embodied robotics to automate the entire research lifecycle.
AGS aims to significantly reduce the time and resources needed for scientific discovery.
As these autonomous systems become increasingly integrated into the research process, we hypothesize that scientific discovery might adhere to new scaling laws.
arXiv Detail & Related papers (2025-03-28T14:00:27Z) - Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
A plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently.<n>Ethical concerns regarding shortcomings of these tools and potential for misuse take a particularly prominent place in our discussion.
arXiv Detail & Related papers (2025-02-07T18:26:45Z) - Towards Scientific Discovery with Generative AI: Progress, Opportunities, and Challenges [11.232704182001253]
This paper examines the current state of AI for scientific discovery, highlighting recent progress in large language models and other AI techniques applied to scientific tasks.<n>We then outline key challenges and promising research directions toward developing more comprehensive AI systems for scientific discovery.
arXiv Detail & Related papers (2024-12-16T03:52:20Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Unleashing the Power of AI. A Systematic Review of Cutting-Edge Techniques in AI-Enhanced Scientometrics, Webometrics, and Bibliometrics [1.2374541748245838]
The study aims to analyze the synergy of Artificial Intelligence (AI) with scientometrics, webometrics, and bibliometrics.
Our aim is to explore the potential of AI in revolutionizing the methods used to measure and analyze scholarly communication.
arXiv Detail & Related papers (2024-02-22T15:10:02Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery.
The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patterns in data versus discovering patterns in the world from data.
arXiv Detail & Related papers (2021-11-27T00:55:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.