SciSciGPT: Advancing Human-AI Collaboration in the Science of Science
- URL: http://arxiv.org/abs/2504.05559v1
- Date: Mon, 07 Apr 2025 23:19:39 GMT
- Title: SciSciGPT: Advancing Human-AI Collaboration in the Science of Science
- Authors: Erzhuo Shao, Yifang Wang, Yifan Qian, Zhenyu Pan, Han Liu, Dashun Wang,
- Abstract summary: Recent advances in large language models (LLMs) and AI agents have opened new possibilities for human-AI collaboration.<n>We introduce SciSciGPT, an open-source, prototype AI collaborator that uses the science of science as a testbed to explore the potential of LLM-powered research tools.
- Score: 7.592219145267612
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The increasing availability of large-scale datasets has fueled rapid progress across many scientific fields, creating unprecedented opportunities for research and discovery while posing significant analytical challenges. Recent advances in large language models (LLMs) and AI agents have opened new possibilities for human-AI collaboration, offering powerful tools to navigate this complex research landscape. In this paper, we introduce SciSciGPT, an open-source, prototype AI collaborator that uses the science of science as a testbed to explore the potential of LLM-powered research tools. SciSciGPT automates complex workflows, supports diverse analytical approaches, accelerates research prototyping and iteration, and facilitates reproducibility. Through case studies, we demonstrate its ability to streamline a wide range of empirical and analytical research tasks while highlighting its broader potential to advance research. We further propose an LLM Agent capability maturity model for human-AI collaboration, envisioning a roadmap to further improve and expand upon frameworks like SciSciGPT. As AI capabilities continue to evolve, frameworks like SciSciGPT may play increasingly pivotal roles in scientific research and discovery, unlocking further opportunities. At the same time, these new advances also raise critical challenges, from ensuring transparency and ethical use to balancing human and AI contributions. Addressing these issues may shape the future of scientific inquiry and inform how we train the next generation of scientists to thrive in an increasingly AI-integrated research ecosystem.
Related papers
- Scaling Laws in Scientific Discovery with AI and Robot Scientists [72.3420699173245]
An autonomous generalist scientist (AGS) concept combines agentic AI and embodied robotics to automate the entire research lifecycle.<n>AGS aims to significantly reduce the time and resources needed for scientific discovery.<n>As these autonomous systems become increasingly integrated into the research process, we hypothesize that scientific discovery might adhere to new scaling laws.
arXiv Detail & Related papers (2025-03-28T14:00:27Z) - Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
A plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently.<n>Ethical concerns regarding shortcomings of these tools and potential for misuse take a particularly prominent place in our discussion.
arXiv Detail & Related papers (2025-02-07T18:26:45Z) - Towards Scientific Discovery with Generative AI: Progress, Opportunities, and Challenges [11.232704182001253]
This paper examines the current state of AI for scientific discovery, highlighting recent progress in large language models and other AI techniques applied to scientific tasks.<n>We then outline key challenges and promising research directions toward developing more comprehensive AI systems for scientific discovery.
arXiv Detail & Related papers (2024-12-16T03:52:20Z) - Bridging AI and Science: Implications from a Large-Scale Literature Analysis of AI4Science [25.683422870223076]
We present a large-scale analysis of the AI4Science literature.
We quantitatively highlight key disparities between AI methods and scientific problems.
We explore the potential and challenges of facilitating collaboration between AI and scientific communities.
arXiv Detail & Related papers (2024-11-27T00:40:51Z) - AIGS: Generating Science from AI-Powered Automated Falsification [17.50867181053229]
We propose Baby-AIGS as a baby-step demonstration of a full-process AIGS system, which is a multi-agent system with agents in roles representing key research process.
Experiments on three tasks preliminarily show that Baby-AIGS could produce meaningful scientific discoveries, though not on par with experienced human researchers.
arXiv Detail & Related papers (2024-11-17T13:40:35Z) - Many Heads Are Better Than One: Improved Scientific Idea Generation by A LLM-Based Multi-Agent System [62.832818186789545]
Virtual Scientists (VirSci) is a multi-agent system designed to mimic the teamwork inherent in scientific research.<n>VirSci organizes a team of agents to collaboratively generate, evaluate, and refine research ideas.<n>We show that this multi-agent approach outperforms the state-of-the-art method in producing novel scientific ideas.
arXiv Detail & Related papers (2024-10-12T07:16:22Z) - SciOps: Achieving Productivity and Reliability in Data-Intensive Research [0.8414742293641504]
Scientists are increasingly leveraging advances in instruments, automation, and collaborative tools to scale up their experiments and research goals.
Various scientific disciplines, including neuroscience, have adopted key technologies to enhance collaboration, inspiration and automation.
We introduce a five-level Capability Maturity Model describing the principles of rigorous scientific operations.
arXiv Detail & Related papers (2023-12-29T21:37:22Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery.
The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patterns in data versus discovering patterns in the world from data.
arXiv Detail & Related papers (2021-11-27T00:55:21Z) - Learnings from Frontier Development Lab and SpaceML -- AI Accelerators
for NASA and ESA [57.06643156253045]
Research with AI and ML technologies lives in a variety of settings with often asynchronous goals and timelines.
We perform a case study of the Frontier Development Lab (FDL), an AI accelerator under a public-private partnership from NASA and ESA.
FDL research follows principled practices that are grounded in responsible development, conduct, and dissemination of AI research.
arXiv Detail & Related papers (2020-11-09T21:23:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.