From Task-Specific Models to Unified Systems: A Review of Model Merging Approaches
- URL: http://arxiv.org/abs/2503.08998v1
- Date: Wed, 12 Mar 2025 02:17:31 GMT
- Title: From Task-Specific Models to Unified Systems: A Review of Model Merging Approaches
- Authors: Wei Ruan, Tianze Yang, Yifan Zhou, Tianming Liu, Jin Lu,
- Abstract summary: This paper establishes a new taxonomy of model merging methods, systematically comparing different approaches and providing an overview of key developments.<n>Despite the rapid progress in this field, a comprehensive taxonomy and survey summarizing recent advances and predicting future directions are still lacking.
- Score: 13.778158813149833
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model merging has achieved significant success, with numerous innovative methods proposed to enhance capabilities by combining multiple models. However, challenges persist due to the lack of a unified framework for classification and systematic comparative analysis, leading to inconsistencies in terminologies and categorizations. Meanwhile, as an increasing number of fine-tuned models are publicly available, their original training data often remain inaccessible due to privacy concerns or intellectual property restrictions. This makes traditional multi-task learning based on shared training data impractical. In scenarios where direct access to training data is infeasible, merging model parameters to create a unified model with broad generalization across multiple domains becomes crucial, further underscoring the importance of model merging techniques. Despite the rapid progress in this field, a comprehensive taxonomy and survey summarizing recent advances and predicting future directions are still lacking. This paper addresses these gaps by establishing a new taxonomy of model merging methods, systematically comparing different approaches, and providing an overview of key developments. By offering a structured perspective on this evolving area, we aim to help newcomers quickly grasp the field's landscape and inspire further innovations.
Related papers
- Research on the Online Update Method for Retrieval-Augmented Generation (RAG) Model with Incremental Learning [13.076087281398813]
The proposed method is better than the existing mainstream comparison models in terms of knowledge retention and inference accuracy.
Experimental results show that the proposed method is better than the existing mainstream comparison models in terms of knowledge retention and inference accuracy.
arXiv Detail & Related papers (2025-01-13T05:16:14Z) - HM3: Hierarchical Multi-Objective Model Merging for Pretrained Models [28.993221775758702]
Model merging is a technique that combines multiple large pretrained models into a single model with enhanced performance and broader task adaptability.
This paper marks a significant advance toward more flexible and comprehensive model merging techniques.
We train policy and value networks using offline sampling of weight vectors, which are then employed for the online optimization of merging strategies.
arXiv Detail & Related papers (2024-09-27T16:31:31Z) - Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities [89.40778301238642]
Model merging is an efficient empowerment technique in the machine learning community.
There is a significant gap in the literature regarding a systematic and thorough review of these techniques.
arXiv Detail & Related papers (2024-08-14T16:58:48Z) - MergeNet: Knowledge Migration across Heterogeneous Models, Tasks, and Modalities [72.05167902805405]
We present MergeNet, which learns to bridge the gap of parameter spaces of heterogeneous models.
The core mechanism of MergeNet lies in the parameter adapter, which operates by querying the source model's low-rank parameters.
MergeNet is learned alongside both models, allowing our framework to dynamically transfer and adapt knowledge relevant to the current stage.
arXiv Detail & Related papers (2024-04-20T08:34:39Z) - Pre-trained Recommender Systems: A Causal Debiasing Perspective [19.712997823535066]
We develop a generic recommender that captures universal interaction patterns by training on generic user-item interaction data extracted from different domains.
Our empirical studies show that the proposed model could significantly improve the recommendation performance in zero- and few-shot learning settings.
arXiv Detail & Related papers (2023-10-30T03:37:32Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - INTERN: A New Learning Paradigm Towards General Vision [117.3343347061931]
We develop a new learning paradigm named INTERN.
By learning with supervisory signals from multiple sources in multiple stages, the model being trained will develop strong generalizability.
In most cases, our models, adapted with only 10% of the training data in the target domain, outperform the counterparts trained with the full set of data.
arXiv Detail & Related papers (2021-11-16T18:42:50Z) - Discriminative Multimodal Learning via Conditional Priors in Generative
Models [21.166519800652047]
This research studies the realistic scenario in which all modalities and class labels are available for model training.
We show, in this scenario, that the variational lower bound limits mutual information between joint representations and missing modalities.
arXiv Detail & Related papers (2021-10-09T17:22:24Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.