ManeuverGPT Agentic Control for Safe Autonomous Stunt Maneuvers
- URL: http://arxiv.org/abs/2503.09035v1
- Date: Wed, 12 Mar 2025 03:51:41 GMT
- Title: ManeuverGPT Agentic Control for Safe Autonomous Stunt Maneuvers
- Authors: Shawn Azdam, Pranav Doma, Aliasghar Moj Arab,
- Abstract summary: This paper presents a novel framework, ManeuverGPT, for generating and executing high-dynamic stunt maneuvers in autonomous vehicles.<n>We propose an agentic architecture comprised of three specialized agents.<n> Experimental results demonstrate successful J-turn execution across multiple vehicle models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The next generation of active safety features in autonomous vehicles should be capable of safely executing evasive hazard-avoidance maneuvers akin to those performed by professional stunt drivers to achieve high-agility motion at the limits of vehicle handling. This paper presents a novel framework, ManeuverGPT, for generating and executing high-dynamic stunt maneuvers in autonomous vehicles using large language model (LLM)-based agents as controllers. We target aggressive maneuvers, such as J-turns, within the CARLA simulation environment and demonstrate an iterative, prompt-based approach to refine vehicle control parameters, starting tabula rasa without retraining model weights. We propose an agentic architecture comprised of three specialized agents (1) a Query Enricher Agent for contextualizing user commands, (2) a Driver Agent for generating maneuver parameters, and (3) a Parameter Validator Agent that enforces physics-based and safety constraints. Experimental results demonstrate successful J-turn execution across multiple vehicle models through textual prompts that adapt to differing vehicle dynamics. We evaluate performance via established success criteria and discuss limitations regarding numeric precision and scenario complexity. Our findings underscore the potential of LLM-driven control for flexible, high-dynamic maneuvers, while highlighting the importance of hybrid approaches that combine language-based reasoning with algorithmic validation.
Related papers
- SafeAuto: Knowledge-Enhanced Safe Autonomous Driving with Multimodal Foundation Models [63.71984266104757]
Multimodal Large Language Models (MLLMs) can process both visual and textual data.
We propose SafeAuto, a novel framework that enhances MLLM-based autonomous driving systems by incorporating both unstructured and structured knowledge.
arXiv Detail & Related papers (2025-02-28T21:53:47Z) - TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Drive is a hybrid framework that integrates a Teacher LLM to guide an attention-based Student DRL policy.<n>A self-attention mechanism then fuses these strategies with the DRL agent's exploration, accelerating policy convergence and boosting robustness.
arXiv Detail & Related papers (2025-02-03T14:22:03Z) - Control-ITRA: Controlling the Behavior of a Driving Model [14.31198056147624]
We introduce a method called Control-ITRA to influence agent behavior through waypoint assignment and target speed modulation.<n>We demonstrate that our method can generate controllable, infraction-free trajectories while preserving realism in both seen and unseen locations.
arXiv Detail & Related papers (2025-01-17T03:35:11Z) - Adversarial Safety-Critical Scenario Generation using Naturalistic Human Driving Priors [2.773055342671194]
We introduce a natural adversarial scenario generation solution using naturalistic human driving priors and reinforcement learning techniques.
Our findings demonstrate that the proposed model can generate realistic safety-critical test scenarios covering both naturalness and adversariality.
arXiv Detail & Related papers (2024-08-06T13:58:56Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - Modelling, Positioning, and Deep Reinforcement Learning Path Tracking
Control of Scaled Robotic Vehicles: Design and Experimental Validation [3.807917169053206]
Scaled robotic cars are commonly equipped with a hierarchical control acthiecture that includes tasks dedicated to vehicle state estimation and control.
This paper covers both aspects by proposing (i) a federeted extended Kalman filter (FEKF) and (ii) a novel deep reinforcement learning (DRL) path tracking controller trained via an expert demonstrator.
The experimentally validated model is used for (i) supporting the design of the FEKF and (ii) serving as a digital twin for training the proposed DRL-based path tracking algorithm.
arXiv Detail & Related papers (2024-01-10T14:40:53Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - Learning Terrain-Aware Kinodynamic Model for Autonomous Off-Road Rally
Driving With Model Predictive Path Integral Control [4.23755398158039]
We propose a method for learning terrain-aware kinodynamic model conditioned on both proprioceptive and exteroceptive information.
The proposed model generates reliable predictions of 6-degree-of-freedom motion and can even estimate contact interactions.
We demonstrate the effectiveness of our approach through experiments on a simulated off-road track, showing that our proposed model-controller pair outperforms the baseline.
arXiv Detail & Related papers (2023-05-01T06:09:49Z) - Augmented Driver Behavior Models for High-Fidelity Simulation Study of
Crash Detection Algorithms [2.064612766965483]
We present a simulation platform for a hybrid transportation system that includes both human-driven and automated vehicles.
We decompose the human driving task and offer a modular approach to simulating a large-scale traffic scenario.
We analyze a large driving dataset to extract expressive parameters that would best describe different driving characteristics.
arXiv Detail & Related papers (2022-08-10T19:59:16Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
We propose TransFuser, a novel Multi-Modal Fusion Transformer, to integrate image and LiDAR representations using attention.
Our approach achieves state-of-the-art driving performance while reducing collisions by 76% compared to geometry-based fusion.
arXiv Detail & Related papers (2021-04-19T11:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.