Theoretical Guarantees for High Order Trajectory Refinement in Generative Flows
- URL: http://arxiv.org/abs/2503.09069v1
- Date: Wed, 12 Mar 2025 05:07:07 GMT
- Title: Theoretical Guarantees for High Order Trajectory Refinement in Generative Flows
- Authors: Chengyue Gong, Xiaoyu Li, Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, Yu Tian,
- Abstract summary: Flow matching has emerged as a powerful framework for generative modeling.<n>We prove that higher-order flow matching preserves worst case optimality as a distribution estimator.
- Score: 40.884514919698596
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Flow matching has emerged as a powerful framework for generative modeling, offering computational advantages over diffusion models by leveraging deterministic Ordinary Differential Equations (ODEs) instead of stochastic dynamics. While prior work established the worst case optimality of standard flow matching under Wasserstein distances, the theoretical guarantees for higher-order flow matching - which incorporates acceleration terms to refine sample trajectories - remain unexplored. In this paper, we bridge this gap by proving that higher-order flow matching preserves worst case optimality as a distribution estimator. We derive upper bounds on the estimation error for second-order flow matching, demonstrating that the convergence rates depend polynomially on the smoothness of the target distribution (quantified via Besov spaces) and key parameters of the ODE dynamics. Our analysis employs neural network approximations with carefully controlled depth, width, and sparsity to bound acceleration errors across both small and large time intervals, ultimately unifying these results into a general worst case optimal bound for all time steps.
Related papers
- On the minimax optimality of Flow Matching through the connection to kernel density estimation [0.0]
Flow Matching is a simple and flexible alternative to diffusion models.
We prove that Flow Matching matches the optimal rate of convergence in Wasserstein distance up to logarithmic factors.
We also provide a first justification of Flow Matching's effectiveness in high-dimensional settings.
arXiv Detail & Related papers (2025-04-17T21:06:41Z) - Minimax Optimality of the Probability Flow ODE for Diffusion Models [8.15094483029656]
This work develops the first end-to-end theoretical framework for deterministic ODE-based samplers.<n>We propose a smooth regularized score estimator that simultaneously controls both the $L2$ score error and the associated mean Jacobian error.<n>We demonstrate that the resulting sampler achieves the minimax rate in total variation distance, modulo logarithmic factors.
arXiv Detail & Related papers (2025-03-12T17:51:29Z) - 2-Rectifications are Enough for Straight Flows: A Theoretical Insight into Wasserstein Convergence [54.580605276017096]
We provide the first theoretical analysis of the Wasserstein distance between the sampling distribution of Rectified Flow and the target distribution.<n>We show that for a rectified flow from a Gaussian to any general target distribution with finite first moment, two rectifications are sufficient to achieve a straight flow.
arXiv Detail & Related papers (2024-10-19T02:36:11Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional dependencies for general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Flow matching achieves almost minimax optimal convergence [50.38891696297888]
Flow matching (FM) has gained significant attention as a simulation-free generative model.
This paper discusses the convergence properties of FM for large sample size under the $p$-Wasserstein distance.
We establish that FM can achieve an almost minimax optimal convergence rate for $1 leq p leq 2$, presenting the first theoretical evidence that FM can reach convergence rates comparable to those of diffusion models.
arXiv Detail & Related papers (2024-05-31T14:54:51Z) - Deep conditional distribution learning via conditional Föllmer flow [3.227277661633986]
We introduce an ordinary differential equation (ODE) based deep generative method for learning conditional distributions, named Conditional F"ollmer Flow.
For effective implementation, we discretize the flow with Euler's method where we estimate the velocity field nonparametrically using a deep neural network.
arXiv Detail & Related papers (2024-02-02T14:52:10Z) - Flow-based Distributionally Robust Optimization [23.232731771848883]
We present a framework, called $textttFlowDRO$, for solving flow-based distributionally robust optimization (DRO) problems with Wasserstein uncertainty sets.
We aim to find continuous worst-case distribution (also called the Least Favorable Distribution, LFD) and sample from it.
We demonstrate its usage in adversarial learning, distributionally robust hypothesis testing, and a new mechanism for data-driven distribution perturbation differential privacy.
arXiv Detail & Related papers (2023-10-30T03:53:31Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Sampling (AIS) synthesizes weighted samples from an intractable distribution.
We propose the Constant Rate AIS algorithm and its efficient implementation for $alpha$-divergences.
arXiv Detail & Related papers (2023-06-27T08:15:28Z) - Reweighted Interacting Langevin Diffusions: an Accelerated Sampling
Methodfor Optimization [28.25662317591378]
We propose a new technique to accelerate sampling methods for solving difficult optimization problems.
Our method investigates the connection between posterior distribution sampling and optimization with Langevin dynamics.
arXiv Detail & Related papers (2023-01-30T03:48:20Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.