Divergence Minimization Preference Optimization for Diffusion Model Alignment
- URL: http://arxiv.org/abs/2507.07510v1
- Date: Thu, 10 Jul 2025 07:57:30 GMT
- Title: Divergence Minimization Preference Optimization for Diffusion Model Alignment
- Authors: Binxu Li, Minkai Xu, Meihua Dang, Stefano Ermon,
- Abstract summary: Divergence Minimization Preference Optimization (DMPO) is a principled method for aligning diffusion models by minimizing reverse KL divergence.<n>Our results show that diffusion models fine-tuned with DMPO can consistently outperform or match existing techniques.<n>DMPO unlocks a robust and elegant pathway for preference alignment, bridging principled theory with practical performance in diffusion models.
- Score: 58.651951388346525
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have achieved remarkable success in generating realistic and versatile images from text prompts. Inspired by the recent advancements of language models, there is an increasing interest in further improving the models by aligning with human preferences. However, we investigate alignment from a divergence minimization perspective and reveal that existing preference optimization methods are typically trapped in suboptimal mean-seeking optimization. In this paper, we introduce Divergence Minimization Preference Optimization (DMPO), a novel and principled method for aligning diffusion models by minimizing reverse KL divergence, which asymptotically enjoys the same optimization direction as original RL. We provide rigorous analysis to justify the effectiveness of DMPO and conduct comprehensive experiments to validate its empirical strength across both human evaluations and automatic metrics. Our extensive results show that diffusion models fine-tuned with DMPO can consistently outperform or match existing techniques, specifically outperforming all existing diffusion alignment baselines by at least 64.6% in PickScore across all evaluation datasets, demonstrating the method's superiority in aligning generative behavior with desired outputs. Overall, DMPO unlocks a robust and elegant pathway for preference alignment, bridging principled theory with practical performance in diffusion models.
Related papers
- Iterative Distillation for Reward-Guided Fine-Tuning of Diffusion Models in Biomolecular Design [53.93023688824764]
We address the problem of fine-tuning diffusion models for reward-guided generation in biomolecular design.<n>We propose an iterative distillation-based fine-tuning framework that enables diffusion models to optimize for arbitrary reward functions.<n>Our off-policy formulation, combined with KL divergence minimization, enhances training stability and sample efficiency compared to existing RL-based methods.
arXiv Detail & Related papers (2025-07-01T05:55:28Z) - Optimization-Free Diffusion Model -- A Perturbation Theory Approach [12.756355928431455]
Diffusion models have emerged as a powerful framework in generative modeling.<n>We propose an alternative method that is both optimization-free and forward SDE-free.<n>We demonstrate the effectiveness of our method on high-dimensional Boltzmann distributions and real-world datasets.
arXiv Detail & Related papers (2025-05-29T17:02:26Z) - Rethinking Direct Preference Optimization in Diffusion Models [15.358181258656229]
We propose a novel approach to enhancing diffusion-based preference optimization.<n>First, we introduce a stable reference model update strategy that relaxes the frozen reference model, encouraging exploration.<n>Second, we present a timestep-aware training strategy that mitigates the reward scale imbalance problem across timesteps.
arXiv Detail & Related papers (2025-05-24T15:14:45Z) - InPO: Inversion Preference Optimization with Reparametrized DDIM for Efficient Diffusion Model Alignment [12.823734370183482]
We introduce DDIM-InPO, an efficient method for direct preference alignment of diffusion models.<n>Our approach conceptualizes diffusion model as a single-step generative model, allowing us to fine-tune the outputs of specific latent variables selectively.<n> Experimental results indicate that our DDIM-InPO achieves state-of-the-art performance with just 400 steps of fine-tuning.
arXiv Detail & Related papers (2025-03-24T08:58:49Z) - Preference-Guided Diffusion for Multi-Objective Offline Optimization [64.08326521234228]
We propose a preference-guided diffusion model for offline multi-objective optimization.<n>Our guidance is a preference model trained to predict the probability that one design dominates another.<n>Our results highlight the effectiveness of classifier-guided diffusion models in generating diverse and high-quality solutions.
arXiv Detail & Related papers (2025-03-21T16:49:38Z) - Refining Alignment Framework for Diffusion Models with Intermediate-Step Preference Ranking [50.325021634589596]
We propose a Tailored Optimization Preference (TailorPO) framework for aligning diffusion models with human preference.<n>Our approach directly ranks intermediate noisy samples based on their step-wise reward, and effectively resolves the gradient direction issues.<n> Experimental results demonstrate that our method significantly improves the model's ability to generate aesthetically pleasing and human-preferred images.
arXiv Detail & Related papers (2025-02-01T16:08:43Z) - ASFT: Aligned Supervised Fine-Tuning through Absolute Likelihood [14.512464277772194]
Aligned Supervised Fine-Tuning (ASFT) is an effective approach that better aligns Large Language Models with pair-wise datasets.
ASFT mitigates the issue where the DPO loss function decreases the probability of generating human-dispreferred data.
Extensive experiments demonstrate that ASFT is an effective alignment approach, consistently outperforming existing methods.
arXiv Detail & Related papers (2024-09-14T11:39:13Z) - Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models [54.132297393662654]
We introduce a hybrid method that fine-tunes cutting-edge diffusion models by optimizing reward models through RL.
We demonstrate the capability of our approach to outperform the best designs in offline data, leveraging the extrapolation capabilities of reward models.
arXiv Detail & Related papers (2024-05-30T03:57:29Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI)
In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion)
Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment.
arXiv Detail & Related papers (2024-02-15T18:59:18Z) - Confronting Reward Overoptimization for Diffusion Models: A Perspective of Inductive and Primacy Biases [76.9127853906115]
Bridging the gap between diffusion models and human preferences is crucial for their integration into practical generative.
We propose Temporal Diffusion Policy Optimization with critic active neuron Reset (TDPO-R), a policy gradient algorithm that exploits the temporal inductive bias of diffusion models.
Empirical results demonstrate the superior efficacy of our methods in mitigating reward overoptimization.
arXiv Detail & Related papers (2024-02-13T15:55:41Z) - Estimate-Then-Optimize versus Integrated-Estimation-Optimization versus Sample Average Approximation: A Stochastic Dominance Perspective [21.945745750737952]
We show that a reverse behavior appears when the model class is well-specified and there is sufficient data.<n>We also demonstrate how standard sample average approximation (SAA) performs the worst when the model class is well-specified in terms of regret.
arXiv Detail & Related papers (2023-04-13T21:54:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.