Everything Can Be Described in Words: A Simple Unified Multi-Modal Framework with Semantic and Temporal Alignment
- URL: http://arxiv.org/abs/2503.09081v1
- Date: Wed, 12 Mar 2025 05:28:24 GMT
- Title: Everything Can Be Described in Words: A Simple Unified Multi-Modal Framework with Semantic and Temporal Alignment
- Authors: Xiaowei Bi, Zheyuan Xu,
- Abstract summary: Long Video Question Answering (LVQA) is challenging due to the need for temporal reasoning and large-scale multimodal data processing.<n>We introduce UMaT, a retrieval-augmented generation framework that efficiently processes extremely long videos.<n>We show that UMaT outperforms existing methods in multimodal integration, long-form video understanding, and sparse information retrieval.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Long Video Question Answering (LVQA) is challenging due to the need for temporal reasoning and large-scale multimodal data processing. Existing methods struggle with retrieving cross-modal information from long videos, especially when relevant details are sparsely distributed. We introduce UMaT (Unified Multi-modal as Text), a retrieval-augmented generation (RAG) framework that efficiently processes extremely long videos while maintaining cross-modal coherence. UMaT converts visual and auditory data into a unified textual representation, ensuring semantic and temporal alignment. Short video clips are analyzed using a vision-language model, while automatic speech recognition (ASR) transcribes dialogue. These text-based representations are structured into temporally aligned segments, with adaptive filtering to remove redundancy and retain salient details. The processed data is embedded into a vector database, enabling precise retrieval of dispersed yet relevant content. Experiments on a benchmark LVQA dataset show that UMaT outperforms existing methods in multimodal integration, long-form video understanding, and sparse information retrieval. Its scalability and interpretability allow it to process videos over an hour long while maintaining semantic and temporal coherence. These findings underscore the importance of structured retrieval and multimodal synchronization for advancing LVQA and long-form AI systems.
Related papers
- Multimodal Fact Checking with Unified Visual, Textual, and Contextual Representations [2.139909491081949]
We propose a unified framework for fine-grained multimodal fact verification called "MultiCheck"<n>Our architecture combines dedicated encoders for text and images with a fusion module that captures cross-modal relationships using element-wise interactions.<n>We evaluate our approach on the Factify 2 dataset, achieving a weighted F1 score of 0.84, substantially outperforming the baseline.
arXiv Detail & Related papers (2025-08-07T07:36:53Z) - Teaching Time Series to See and Speak: Forecasting with Aligned Visual and Textual Perspectives [22.10401153489018]
Time series forecasting traditionally relies on unimodal numerical inputs.<n>We propose a multimodal contrastive learning framework that transforms raw time series into structured visual and textual perspectives.
arXiv Detail & Related papers (2025-06-30T17:59:14Z) - MANTA: Cross-Modal Semantic Alignment and Information-Theoretic Optimization for Long-form Multimodal Understanding [0.0]
MANTA is a framework that unifies visual and auditory inputs into a structured textual space for seamless processing with large language models.<n>MANTA addresses four key challenges: (1) semantic alignment across modalities with information-theoretic optimization, (2) adaptive temporal synchronization for varying information densities, and (3) hierarchical content representation for multi-scale understanding.
arXiv Detail & Related papers (2025-06-28T12:12:06Z) - HierarQ: Task-Aware Hierarchical Q-Former for Enhanced Video Understanding [14.464718780172582]
We introduce HierarQ, a task-aware hierarchical Q-Former based framework that sequentially processes frames to bypass the need for frame sampling.<n>We introduce a lightweight two-stream language-guided feature modulator to incorporate task awareness in video understanding.<n>Extensive evaluations on 10 video benchmarks across video understanding, question answering, and captioning tasks demonstrate HierarQ's state-of-the-art performance.
arXiv Detail & Related papers (2025-03-11T16:21:23Z) - Hierarchical Banzhaf Interaction for General Video-Language Representation Learning [60.44337740854767]
Multimodal representation learning plays an important role in the artificial intelligence domain.<n>We introduce a new approach that models video-text as game players using multivariate cooperative game theory.<n>We extend our original structure into a flexible encoder-decoder framework, enabling the model to adapt to various downstream tasks.
arXiv Detail & Related papers (2024-12-30T14:09:15Z) - SALOVA: Segment-Augmented Long Video Assistant for Targeted Retrieval and Routing in Long-Form Video Analysis [52.050036778325094]
We introduce SALOVA: Segment-Augmented Video Assistant, a novel video-LLM framework designed to enhance the comprehension of lengthy video content.
We present a high-quality collection of 87.8K long videos, each densely captioned at the segment level to enable models to capture scene continuity and maintain rich context.
Our framework mitigates the limitations of current video-LMMs by allowing for precise identification and retrieval of relevant video segments in response to queries.
arXiv Detail & Related papers (2024-11-25T08:04:47Z) - Multi-granularity Contrastive Cross-modal Collaborative Generation for End-to-End Long-term Video Question Answering [53.39158264785098]
Long-term Video Question Answering (VideoQA) is a challenging vision-and-language bridging task.
We present an entirely end-to-end solution for VideoQA: Multi-granularity Contrastive cross-modal collaborative Generation model.
arXiv Detail & Related papers (2024-10-12T06:21:58Z) - Semantic-Guided Multimodal Sentiment Decoding with Adversarial Temporal-Invariant Learning [22.54577327204281]
Multimodal sentiment analysis aims to learn representations from different modalities to identify human emotions.
Existing works often neglect the frame-level redundancy inherent in continuous time series, resulting in incomplete modality representations with noise.
We propose temporal-invariant learning for the first time, which constrains the distributional variations over time steps to effectively capture long-term temporal dynamics.
arXiv Detail & Related papers (2024-08-30T03:28:40Z) - Bridging Information Asymmetry in Text-video Retrieval: A Data-centric Approach [56.610806615527885]
A key challenge in text-video retrieval (TVR) is the information asymmetry between video and text.<n>This paper introduces a data-centric framework to bridge this gap by enriching textual representations to better match the richness of video content.<n>We propose a query selection mechanism that identifies the most relevant and diverse queries, reducing computational cost while improving accuracy.
arXiv Detail & Related papers (2024-08-14T01:24:09Z) - MLLM as Video Narrator: Mitigating Modality Imbalance in Video Moment Retrieval [53.417646562344906]
Video Moment Retrieval (VMR) aims to localize a specific temporal segment within an untrimmed long video given a natural language query.
Existing methods often suffer from inadequate training annotations, i.e., the sentence typically matches with a fraction of the prominent video content in the foreground with limited wording diversity.
This intrinsic modality imbalance leaves a considerable portion of visual information remaining unaligned with text.
In this work, we take an MLLM as a video narrator to generate plausible textual descriptions of the video, thereby mitigating the modality imbalance and boosting the temporal localization.
arXiv Detail & Related papers (2024-06-25T18:39:43Z) - Efficient Temporal Extrapolation of Multimodal Large Language Models with Temporal Grounding Bridge [47.750073410717604]
We introduce Temporal Grounding Bridge (TGB), a novel framework that bootstraps MLLMs with advanced temporal grounding capabilities.
We validate TGB across seven video benchmarks and demonstrate substantial performance improvements compared with prior MLLMs.
Our model, initially trained on sequences of four frames, effectively handles sequences up to 16 longer without sacrificing performance.
arXiv Detail & Related papers (2024-02-25T10:27:46Z) - Improving Video Corpus Moment Retrieval with Partial Relevance Enhancement [72.7576395034068]
Video Corpus Moment Retrieval (VCMR) is a new video retrieval task aimed at retrieving a relevant moment from a large corpus of untrimmed videos using a text query.
We argue that effectively capturing the partial relevance between the query and video is essential for the VCMR task.
For video retrieval, we introduce a multi-modal collaborative video retriever, generating different query representations for the two modalities.
For moment localization, we propose the focus-then-fuse moment localizer, utilizing modality-specific gates to capture essential content.
arXiv Detail & Related papers (2024-02-21T07:16:06Z) - Mirasol3B: A Multimodal Autoregressive model for time-aligned and contextual modalities [67.89368528234394]
One of the main challenges of multimodal learning is the need to combine heterogeneous modalities.
Video and audio are obtained at much higher rates than text and are roughly aligned in time.
Our approach achieves the state-of-the-art on well established multimodal benchmarks, outperforming much larger models.
arXiv Detail & Related papers (2023-11-09T19:15:12Z) - Multi-Modal Interaction Graph Convolutional Network for Temporal
Language Localization in Videos [55.52369116870822]
This paper focuses on tackling the problem of temporal language localization in videos.
It aims to identify the start and end points of a moment described by a natural language sentence in an untrimmed video.
arXiv Detail & Related papers (2021-10-12T14:59:25Z) - Video Corpus Moment Retrieval with Contrastive Learning [56.249924768243375]
Video corpus moment retrieval (VCMR) is to retrieve a temporal moment that semantically corresponds to a given text query.
We propose a Retrieval and Localization Network with Contrastive Learning (ReLoCLNet) for VCMR.
Experimental results show that ReLoCLNet encodes text and video separately for efficiency, its retrieval accuracy is comparable with baselines adopting cross-modal interaction learning.
arXiv Detail & Related papers (2021-05-13T12:54:39Z) - Accurate Word Representations with Universal Visual Guidance [55.71425503859685]
This paper proposes a visual representation method to explicitly enhance conventional word embedding with multiple-aspect senses from visual guidance.
We build a small-scale word-image dictionary from a multimodal seed dataset where each word corresponds to diverse related images.
Experiments on 12 natural language understanding and machine translation tasks further verify the effectiveness and the generalization capability of the proposed approach.
arXiv Detail & Related papers (2020-12-30T09:11:50Z) - A Hierarchical Multi-Modal Encoder for Moment Localization in Video
Corpus [31.387948069111893]
We show how to identify a short segment in a long video that semantically matches a text query.
To tackle this problem, we propose the HierArchical Multi-Modal EncodeR (HAMMER) that encodes a video at both the coarse-grained clip level and the fine-trimmed frame level.
We conduct extensive experiments to evaluate our model on moment localization in video corpus on ActivityNet Captions and TVR datasets.
arXiv Detail & Related papers (2020-11-18T02:42:36Z) - Deep Partial Multi-View Learning [94.39367390062831]
We propose a novel framework termed Cross Partial Multi-View Networks (CPM-Nets)
We fifirst provide a formal defifinition of completeness and versatility for multi-view representation.
We then theoretically prove the versatility of the learned latent representations.
arXiv Detail & Related papers (2020-11-12T02:29:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.