Mirasol3B: A Multimodal Autoregressive model for time-aligned and contextual modalities
- URL: http://arxiv.org/abs/2311.05698v3
- Date: Wed, 3 Apr 2024 20:04:49 GMT
- Title: Mirasol3B: A Multimodal Autoregressive model for time-aligned and contextual modalities
- Authors: AJ Piergiovanni, Isaac Noble, Dahun Kim, Michael S. Ryoo, Victor Gomes, Anelia Angelova,
- Abstract summary: One of the main challenges of multimodal learning is the need to combine heterogeneous modalities.
Video and audio are obtained at much higher rates than text and are roughly aligned in time.
Our approach achieves the state-of-the-art on well established multimodal benchmarks, outperforming much larger models.
- Score: 67.89368528234394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the main challenges of multimodal learning is the need to combine heterogeneous modalities (e.g., video, audio, text). For example, video and audio are obtained at much higher rates than text and are roughly aligned in time. They are often not synchronized with text, which comes as a global context, e.g., a title, or a description. Furthermore, video and audio inputs are of much larger volumes, and grow as the video length increases, which naturally requires more compute dedicated to these modalities and makes modeling of long-range dependencies harder. We here decouple the multimodal modeling, dividing it into separate, focused autoregressive models, processing the inputs according to the characteristics of the modalities. We propose a multimodal model, called Mirasol3B, consisting of an autoregressive component for the time-synchronized modalities (audio and video), and an autoregressive component for the context modalities which are not necessarily aligned in time but are still sequential. To address the long-sequences of the video-audio inputs, we propose to further partition the video and audio sequences in consecutive snippets and autoregressively process their representations. To that end, we propose a Combiner mechanism, which models the audio-video information jointly within a timeframe. The Combiner learns to extract audio and video features from raw spatio-temporal signals, and then learns to fuse these features producing compact but expressive representations per snippet. Our approach achieves the state-of-the-art on well established multimodal benchmarks, outperforming much larger models. It effectively addresses the high computational demand of media inputs by both learning compact representations, controlling the sequence length of the audio-video feature representations, and modeling their dependencies in time.
Related papers
- OMCAT: Omni Context Aware Transformer [27.674943980306423]
OCTAV is a novel dataset designed to capture event transitions across audio and video.
OMCAT is a powerful model that leverages RoTE to enhance temporal grounding and computational efficiency in time-anchored tasks.
Our model demonstrates state-of-the-art performance on Audio-Visual Question Answering (AVQA) tasks and the OCTAV benchmark, showcasing significant gains in temporal reasoning and cross-modal alignment.
arXiv Detail & Related papers (2024-10-15T23:16:28Z) - Fine-grained Audio-Visual Joint Representations for Multimodal Large
Language Models [25.660343393359565]
This paper proposes a fine-grained audio-visual joint representation (FAVOR) learning framework for multimodal large language models (LLM)
FAVOR simultaneously perceive speech and audio events in the audio input stream and images or videos in the visual input stream, at the frame level.
An interactive demo of FAVOR is available at https://github.com/BriansIDP/AudioVisualLLM.git, and the training code and model checkpoints will be released soon.
arXiv Detail & Related papers (2023-10-09T17:00:20Z) - TMac: Temporal Multi-Modal Graph Learning for Acoustic Event
Classification [60.038979555455775]
We propose a Temporal Multi-modal graph learning method for Acoustic event Classification, called TMac.
In particular, we construct a temporal graph for each acoustic event, dividing its audio data and video data into multiple segments.
Several experiments are conducted to demonstrate TMac outperforms other SOTA models in performance.
arXiv Detail & Related papers (2023-09-21T07:39:08Z) - MIST: Multi-modal Iterative Spatial-Temporal Transformer for Long-form
Video Question Answering [73.61182342844639]
We introduce a new model named Multi-modal Iterative Spatial-temporal Transformer (MIST) to better adapt pre-trained models for long-form VideoQA.
MIST decomposes traditional dense spatial-temporal self-attention into cascaded segment and region selection modules.
Visual concepts at different granularities are then processed efficiently through an attention module.
arXiv Detail & Related papers (2022-12-19T15:05:40Z) - MM-Diffusion: Learning Multi-Modal Diffusion Models for Joint Audio and
Video Generation [70.74377373885645]
We propose the first joint audio-video generation framework that brings engaging watching and listening experiences simultaneously.
MM-Diffusion consists of a sequential multi-modal U-Net for a joint denoising process by design.
Experiments show superior results in unconditional audio-video generation, and zero-shot conditional tasks.
arXiv Detail & Related papers (2022-12-19T14:11:52Z) - Attention Bottlenecks for Multimodal Fusion [90.75885715478054]
Machine perception models are typically modality-specific and optimised for unimodal benchmarks.
We introduce a novel transformer based architecture that uses fusion' for modality fusion at multiple layers.
We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks.
arXiv Detail & Related papers (2021-06-30T22:44:12Z) - Dense-Caption Matching and Frame-Selection Gating for Temporal
Localization in VideoQA [96.10612095576333]
We propose a video question answering model which effectively integrates multi-modal input sources and finds the temporally relevant information to answer questions.
Our model is also comprised of dual-level attention (word/object and frame level), multi-head self-cross-integration for different sources (video and dense captions), and which pass more relevant information to gates.
We evaluate our model on the challenging TVQA dataset, where each of our model components provides significant gains, and our overall model outperforms the state-of-the-art by a large margin.
arXiv Detail & Related papers (2020-05-13T16:35:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.