VaxGuard: A Multi-Generator, Multi-Type, and Multi-Role Dataset for Detecting LLM-Generated Vaccine Misinformation
- URL: http://arxiv.org/abs/2503.09103v1
- Date: Wed, 12 Mar 2025 06:43:25 GMT
- Title: VaxGuard: A Multi-Generator, Multi-Type, and Multi-Role Dataset for Detecting LLM-Generated Vaccine Misinformation
- Authors: Syed Talal Ahmad, Haohui Lu, Sidong Liu, Annie Lau, Amin Beheshti, Mark Dras, Usman Naseem,
- Abstract summary: Existing benchmarks often overlook vaccine-related misinformation and the diverse roles of misinformation spreaders.<n>This paper introduces VaxGuard, a novel dataset designed to address these challenges.
- Score: 8.08298631918046
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in Large Language Models (LLMs) have significantly improved text generation capabilities. However, they also present challenges, particularly in generating vaccine-related misinformation, which poses risks to public health. Despite research on human-authored misinformation, a notable gap remains in understanding how LLMs contribute to vaccine misinformation and how best to detect it. Existing benchmarks often overlook vaccine-specific misinformation and the diverse roles of misinformation spreaders. This paper introduces VaxGuard, a novel dataset designed to address these challenges. VaxGuard includes vaccine-related misinformation generated by multiple LLMs and provides a comprehensive framework for detecting misinformation across various roles. Our findings show that GPT-3.5 and GPT-4o consistently outperform other LLMs in detecting misinformation, especially when dealing with subtle or emotionally charged narratives. On the other hand, PHI3 and Mistral show lower performance, struggling with precision and recall in fear-driven contexts. Additionally, detection performance tends to decline as input text length increases, indicating the need for improved methods to handle larger content. These results highlight the importance of role-specific detection strategies and suggest that VaxGuard can serve as a key resource for improving the detection of LLM-generated vaccine misinformation.
Related papers
- How to Protect Yourself from 5G Radiation? Investigating LLM Responses to Implicit Misinformation [24.355564722047244]
Large Language Models (LLMs) are widely deployed in diverse scenarios.<n>The extent to which they could tacitly spread misinformation emerges as a critical safety concern.<n>We curated ECHOMIST, the first benchmark for implicit misinformation.
arXiv Detail & Related papers (2025-03-12T17:59:18Z) - Optimizing Social Media Annotation of HPV Vaccine Skepticism and Misinformation Using Large Language Models: An Experimental Evaluation of In-Context Learning and Fine-Tuning Stance Detection Across Multiple Models [10.2201516537852]
We experimentally determine optimal strategies for scaling up social media content annotation for stance detection on HPV vaccine-related tweets.
In general, in-context learning outperforms fine-tuning in stance detection for HPV vaccine social media content.
arXiv Detail & Related papers (2024-11-22T04:19:32Z) - Can Editing LLMs Inject Harm? [122.83469484328465]
We propose to reformulate knowledge editing as a new type of safety threat for Large Language Models.
For the risk of misinformation injection, we first categorize it into commonsense misinformation injection and long-tail misinformation injection.
For the risk of bias injection, we discover that not only can biased sentences be injected into LLMs with high effectiveness, but also one single biased sentence injection can cause a bias increase.
arXiv Detail & Related papers (2024-07-29T17:58:06Z) - LEMMA: Towards LVLM-Enhanced Multimodal Misinformation Detection with External Knowledge Augmentation [58.524237916836164]
We propose LEMMA: LVLM-Enhanced Multimodal Misinformation Detection with External Knowledge Augmentation.
Our method improves the accuracy over the top baseline LVLM by 7% and 13% on Twitter and Fakeddit datasets respectively.
arXiv Detail & Related papers (2024-02-19T08:32:27Z) - Hierarchical Multi-Label Classification of Online Vaccine Concerns [8.271202196208]
Vaccine concerns are an ever-evolving target, and can shift quickly as seen during the COVID-19 pandemic.
We explore the task of detecting vaccine concerns in online discourse using large language models (LLMs) in a zero-shot setting without the need for expensive training datasets.
arXiv Detail & Related papers (2024-02-01T20:56:07Z) - A Survey on Detection of LLMs-Generated Content [97.87912800179531]
The ability to detect LLMs-generated content has become of paramount importance.
We aim to provide a detailed overview of existing detection strategies and benchmarks.
We also posit the necessity for a multi-faceted approach to defend against various attacks.
arXiv Detail & Related papers (2023-10-24T09:10:26Z) - The Perils & Promises of Fact-checking with Large Language Models [55.869584426820715]
Large Language Models (LLMs) are increasingly trusted to write academic papers, lawsuits, and news articles.
We evaluate the use of LLM agents in fact-checking by having them phrase queries, retrieve contextual data, and make decisions.
Our results show the enhanced prowess of LLMs when equipped with contextual information.
While LLMs show promise in fact-checking, caution is essential due to inconsistent accuracy.
arXiv Detail & Related papers (2023-10-20T14:49:47Z) - Disinformation Detection: An Evolving Challenge in the Age of LLMs [16.46484369516341]
Large Language Models (LLMs) can generate highly persuasive yet misleading content.
LLMs can be exploited to serve as a robust defense against advanced disinformation.
A holistic exploration for the formation and detection of disinformation is conducted to foster this line of research.
arXiv Detail & Related papers (2023-09-25T22:12:50Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
We investigate the potential misuse of modern Large Language Models (LLMs) for generating credible-sounding misinformation.
Our study reveals that LLMs can act as effective misinformation generators, leading to a significant degradation in the performance of Open-Domain Question Answering (ODQA) systems.
arXiv Detail & Related papers (2023-05-23T04:10:26Z) - Insta-VAX: A Multimodal Benchmark for Anti-Vaccine and Misinformation
Posts Detection on Social Media [32.252687203366605]
Anti-vaccine posts on social media have been shown to create confusion and reduce the publics confidence in vaccines.
Insta-VAX is a new multi-modal dataset consisting of a sample of 64,957 Instagram posts related to human vaccines.
arXiv Detail & Related papers (2021-12-15T20:34:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.