論文の概要: Drift-Aware Federated Learning: A Causal Perspective
- arxiv url: http://arxiv.org/abs/2503.09116v1
- Date: Wed, 12 Mar 2025 07:05:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-13 15:38:25.219757
- Title: Drift-Aware Federated Learning: A Causal Perspective
- Title(参考訳): ドリフト・アウェア・フェデレーション・ラーニング : 因果的視点
- Authors: Yunjie Fang, Sheng Wu, Tao Yang, Xiaofeng Wu, Bo Hu,
- Abstract要約: フェデレートラーニング(FL)は、データのプライバシを保持しながら、複数のクライアント間の協調モデルトレーニングを容易にする。
本稿では, モデル更新ドリフトとグローバルドリフト, および因果的観点からの局所的関係について検討する。
本稿では,このドリフトを緩和するためのCausal drift-Aware Federated lEarning (CAFE) という新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 12.147553697274951
- License:
- Abstract: Federated learning (FL) facilitates collaborative model training among multiple clients while preserving data privacy, often resulting in enhanced performance compared to models trained by individual clients. However, factors such as communication frequency and data distribution can contribute to feature drift, hindering the attainment of optimal training performance. This paper examine the relationship between model update drift and global as well as local optimizer from causal perspective. The influence of the global optimizer on feature drift primarily arises from the participation frequency of certain clients in server updates, whereas the effect of the local optimizer is typically associated with imbalanced data distributions.To mitigate this drift, we propose a novel framework termed Causal drift-Aware Federated lEarning (CAFE). CAFE exploits the causal relationship between feature-invariant components and classification outcomes to independently calibrate local client sample features and classifiers during the training phase. In the inference phase, it eliminated the drifts in the global model that favor frequently communicating clients.Experimental results demonstrate that CAFE's integration of feature calibration, parameter calibration, and historical information effectively reduces both drift towards majority classes and tendencies toward frequently communicating nodes.
- Abstract(参考訳): フェデレートラーニング(FL)は、データのプライバシを維持しながら、複数のクライアント間で協調的なモデルトレーニングを促進する。
しかし、通信周波数やデータ分布などの要因は特徴の漂流に寄与し、最適な訓練性能の達成を妨げる。
本稿では,モデル更新ドリフトとグローバル,および因果的観点からのローカルオプティマイザの関係について検討する。
機能ドリフトに対するグローバルオプティマイザの影響は主にサーバ更新における特定のクライアントの参加頻度から生じるが,ローカルオプティマイザの効果は典型的には不均衡なデータ分布と関連付けられ,このドリフトを緩和するために,Causal drift-Aware Federated lEarning (CAFE) と呼ばれる新しいフレームワークを提案する。
CAFEは、特徴不変成分と分類結果の因果関係を利用して、トレーニングフェーズ中にローカルクライアントのサンプル特徴と分類器を独立に校正する。
推定段階では,頻繁に通信するクライアントを好むグローバルモデルのドリフトを排除し,CAFEによる特徴校正,パラメータ校正,履歴情報の統合により,多数クラスへのドリフトと頻繁な通信ノードへの傾向を効果的に低減できることを示す実験結果を得た。
関連論文リスト
- An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - FedImpro: Measuring and Improving Client Update in Federated Learning [77.68805026788836]
フェデレートラーニング(FL)モデルは、不均一なデータによって引き起こされるクライアントのドリフトを経験することが多い。
我々は、クライアントのドリフトに対する別の視点を示し、改善されたローカルモデルを生成することにより、それを緩和することを目指している。
論文 参考訳(メタデータ) (2024-02-10T18:14:57Z) - Federated Skewed Label Learning with Logits Fusion [23.062650578266837]
フェデレートラーニング(FL)は、ローカルデータを送信することなく、複数のクライアント間で共有モデルを協調的にトレーニングすることを目的としている。
本稿では,ロジットの校正により局所モデル間の最適化バイアスを補正するFedBalanceを提案する。
提案手法は最先端手法に比べて平均精度が13%高い。
論文 参考訳(メタデータ) (2023-11-14T14:37:33Z) - Adaptive Self-Distillation for Minimizing Client Drift in Heterogeneous
Federated Learning [9.975023463908496]
Federated Learning(FL)は、クライアントがローカルトレーニングデータを共有せずに、局所的にトレーニングされたモデルを集約することで、グローバルモデルの共同トレーニングを可能にする機械学習パラダイムである。
本稿では,適応自己蒸留(ASD)に基づく新たな正規化手法を提案する。
我々の正規化方式は,グローバルモデルエントロピーとクライアントのラベル分布に基づいて,クライアントのトレーニングデータに適応的に適応的に適応する。
論文 参考訳(メタデータ) (2023-05-31T07:00:42Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
フェデレートラーニング(FL)は、グローバルモデルを協調的にトレーニングする複数のクライアントを含む、人気のある分散ラーニングパラダイムになっています。
データサンプルは通常、現実世界の長い尾の分布に従っており、分散化された長い尾のデータのFLは、貧弱なグローバルモデルをもたらす。
本研究では、局所的な実データとグローバルな勾配のプロトタイプを統合し、局所的なバランスの取れたデータセットを形成する。
論文 参考訳(メタデータ) (2023-01-25T03:18:10Z) - FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling
and Correction [48.85303253333453]
フェデレートラーニング(FL)は、複数のクライアントがプライベートデータを共有せずに、高性能なグローバルモデルを集合的にトレーニングすることを可能にする。
局所的ドリフトデカップリングと補正(FedDC)を用いた新しいフェデレーション学習アルゴリズムを提案する。
私たちのFedDCでは、ローカルモデルパラメータとグローバルモデルパラメータのギャップを追跡するために、各クライアントが補助的なローカルドリフト変数を使用するような、ローカルトレーニングフェーズにおける軽量な修正のみを導入しています。
実験結果と解析結果から,FedDCは様々な画像分類タスクにおいて,収差の迅速化と性能の向上を図っている。
論文 参考訳(メタデータ) (2022-03-22T14:06:26Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
フェデレーション学習は重要な分散学習パラダイムとして登場し、サーバはクライアントデータにアクセスせずに、多くのクライアントがトレーニングしたモデルからグローバルモデルを集約する。
本稿では, 統計的不均一性を緩和し, フェデレートネットワークにおけるクライアント間での精度向上を図るために, ゼロショットデータ拡張を用いた新しいフェデレーション学習システムを提案する。
Fed-ZDAC (クライアントでのゼロショットデータ拡張によるフェデレーション学習) と Fed-ZDAS (サーバでのゼロショットデータ拡張によるフェデレーション学習) の2種類について検討する。
論文 参考訳(メタデータ) (2021-04-27T18:23:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。