AdvAD: Exploring Non-Parametric Diffusion for Imperceptible Adversarial Attacks
- URL: http://arxiv.org/abs/2503.09124v1
- Date: Wed, 12 Mar 2025 07:22:39 GMT
- Title: AdvAD: Exploring Non-Parametric Diffusion for Imperceptible Adversarial Attacks
- Authors: Jin Li, Ziqiang He, Anwei Luo, Jian-Fang Hu, Z. Jane Wang, Xiangui Kang,
- Abstract summary: Imperceptible adversarial attacks aim to fool DNNs by adding imperceptible perturbation to the input data.<n>Previous methods typically improve the imperceptibility of attacks by integrating common attack paradigms with specifically designed perception-based losses or the capabilities of generative models.<n>We propose Adversarial Attacks in Diffusion (AdvAD), a novel modeling framework distinct from existing attack paradigms.
- Score: 24.401789411246874
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Imperceptible adversarial attacks aim to fool DNNs by adding imperceptible perturbation to the input data. Previous methods typically improve the imperceptibility of attacks by integrating common attack paradigms with specifically designed perception-based losses or the capabilities of generative models. In this paper, we propose Adversarial Attacks in Diffusion (AdvAD), a novel modeling framework distinct from existing attack paradigms. AdvAD innovatively conceptualizes attacking as a non-parametric diffusion process by theoretically exploring basic modeling approach rather than using the denoising or generation abilities of regular diffusion models requiring neural networks. At each step, much subtler yet effective adversarial guidance is crafted using only the attacked model without any additional network, which gradually leads the end of diffusion process from the original image to a desired imperceptible adversarial example. Grounded in a solid theoretical foundation of the proposed non-parametric diffusion process, AdvAD achieves high attack efficacy and imperceptibility with intrinsically lower overall perturbation strength. Additionally, an enhanced version AdvAD-X is proposed to evaluate the extreme of our novel framework under an ideal scenario. Extensive experiments demonstrate the effectiveness of the proposed AdvAD and AdvAD-X. Compared with state-of-the-art imperceptible attacks, AdvAD achieves an average of 99.9$\%$ (+17.3$\%$) ASR with 1.34 (-0.97) $l_2$ distance, 49.74 (+4.76) PSNR and 0.9971 (+0.0043) SSIM against four prevalent DNNs with three different architectures on the ImageNet-compatible dataset. Code is available at https://github.com/XianguiKang/AdvAD.
Related papers
- DiffAttack: Evasion Attacks Against Diffusion-Based Adversarial
Purification [63.65630243675792]
Diffusion-based purification defenses leverage diffusion models to remove crafted perturbations of adversarial examples.
Recent studies show that even advanced attacks cannot break such defenses effectively.
We propose a unified framework DiffAttack to perform effective and efficient attacks against diffusion-based purification defenses.
arXiv Detail & Related papers (2023-10-27T15:17:50Z) - Universal Adversarial Defense in Remote Sensing Based on Pre-trained Denoising Diffusion Models [17.283914361697818]
Deep neural networks (DNNs) have risen to prominence as key solutions in numerous AI applications for earth observation (AI4EO)
This paper presents a novel Universal Adversarial Defense approach in Remote Sensing Imagery (UAD-RS)
arXiv Detail & Related papers (2023-07-31T17:21:23Z) - AdvDiff: Generating Unrestricted Adversarial Examples using Diffusion Models [7.406040859734522]
Unrestricted adversarial attacks present a serious threat to deep learning models and adversarial defense techniques.
Previous attack methods often directly inject Projected Gradient Descent (PGD) gradients into the sampling of generative models.
We propose a new method, called AdvDiff, to generate unrestricted adversarial examples with diffusion models.
arXiv Detail & Related papers (2023-07-24T03:10:02Z) - Enhancing Adversarial Robustness via Score-Based Optimization [22.87882885963586]
Adversarial attacks have the potential to mislead deep neural network classifiers by introducing slight perturbations.
We introduce a novel adversarial defense scheme named ScoreOpt, which optimize adversarial samples at test-time.
Our experimental results demonstrate that our approach outperforms existing adversarial defenses in terms of both performance and robustness speed.
arXiv Detail & Related papers (2023-07-10T03:59:42Z) - Robust Classification via a Single Diffusion Model [37.46217654590878]
Robust Diffusion (RDC) is a generative classifier constructed from a pre-trained diffusion model to be adversarially robust.
RDC achieves $75.67%$ robust accuracy against various $ell_infty$ norm-bounded adaptive attacks with $epsilon_infty/255$ on CIFAR-10.
arXiv Detail & Related papers (2023-05-24T15:25:19Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification.
To defend against such attacks, an effective approach, known as adversarial training (AT), has been shown to mitigate robust training.
We propose a large-batch adversarial training framework implemented over multiple machines.
arXiv Detail & Related papers (2022-06-13T15:39:43Z) - Discriminator-Free Generative Adversarial Attack [87.71852388383242]
Agenerative-based adversarial attacks can get rid of this limitation.
ASymmetric Saliency-based Auto-Encoder (SSAE) generates the perturbations.
The adversarial examples generated by SSAE not only make thewidely-used models collapse, but also achieves good visual quality.
arXiv Detail & Related papers (2021-07-20T01:55:21Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNs are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications.
We propose the adaptive feature alignment (AFA) to generate features of arbitrary attacking strengths.
Our method is trained to automatically align features of arbitrary attacking strength.
arXiv Detail & Related papers (2021-05-31T17:01:05Z) - AdvHaze: Adversarial Haze Attack [19.744435173861785]
We introduce a novel adversarial attack method based on haze, which is a common phenomenon in real-world scenery.
Our method can synthesize potentially adversarial haze into an image based on the atmospheric scattering model with high realisticity.
We demonstrate that the proposed method achieves a high success rate, and holds better transferability across different classification models than the baselines.
arXiv Detail & Related papers (2021-04-28T09:52:25Z) - Towards Adversarial Patch Analysis and Certified Defense against Crowd
Counting [61.99564267735242]
Crowd counting has drawn much attention due to its importance in safety-critical surveillance systems.
Recent studies have demonstrated that deep neural network (DNN) methods are vulnerable to adversarial attacks.
We propose a robust attack strategy called Adversarial Patch Attack with Momentum to evaluate the robustness of crowd counting models.
arXiv Detail & Related papers (2021-04-22T05:10:55Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
Adversarial training (AT) is among the most effective techniques to improve model robustness by augmenting training data with adversarial examples.
Most existing AT methods adopt a specific attack to craft adversarial examples, leading to the unreliable robustness against other unseen attacks.
In this paper, we introduce adversarial distributional training (ADT), a novel framework for learning robust models.
arXiv Detail & Related papers (2020-02-14T12:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.