Enhancing Adversarial Robustness via Score-Based Optimization
- URL: http://arxiv.org/abs/2307.04333v3
- Date: Sat, 28 Oct 2023 12:53:24 GMT
- Title: Enhancing Adversarial Robustness via Score-Based Optimization
- Authors: Boya Zhang, Weijian Luo, Zhihua Zhang
- Abstract summary: Adversarial attacks have the potential to mislead deep neural network classifiers by introducing slight perturbations.
We introduce a novel adversarial defense scheme named ScoreOpt, which optimize adversarial samples at test-time.
Our experimental results demonstrate that our approach outperforms existing adversarial defenses in terms of both performance and robustness speed.
- Score: 22.87882885963586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial attacks have the potential to mislead deep neural network
classifiers by introducing slight perturbations. Developing algorithms that can
mitigate the effects of these attacks is crucial for ensuring the safe use of
artificial intelligence. Recent studies have suggested that score-based
diffusion models are effective in adversarial defenses. However, existing
diffusion-based defenses rely on the sequential simulation of the reversed
stochastic differential equations of diffusion models, which are
computationally inefficient and yield suboptimal results. In this paper, we
introduce a novel adversarial defense scheme named ScoreOpt, which optimizes
adversarial samples at test-time, towards original clean data in the direction
guided by score-based priors. We conduct comprehensive experiments on multiple
datasets, including CIFAR10, CIFAR100 and ImageNet. Our experimental results
demonstrate that our approach outperforms existing adversarial defenses in
terms of both robustness performance and inference speed.
Related papers
- Perturbation-Invariant Adversarial Training for Neural Ranking Models:
Improving the Effectiveness-Robustness Trade-Off [107.35833747750446]
adversarial examples can be crafted by adding imperceptible perturbations to legitimate documents.
This vulnerability raises significant concerns about their reliability and hinders the widespread deployment of NRMs.
In this study, we establish theoretical guarantees regarding the effectiveness-robustness trade-off in NRMs.
arXiv Detail & Related papers (2023-12-16T05:38:39Z) - Improving Adversarial Transferability by Stable Diffusion [36.97548018603747]
adversarial examples introduce imperceptible perturbations to benign samples, deceiving predictions.
Deep neural networks (DNNs) are susceptible to adversarial examples, which introduce imperceptible perturbations to benign samples, deceiving predictions.
We introduce a novel attack method called Stable Diffusion Attack Method (SDAM), which incorporates samples generated by Stable Diffusion to augment input images.
arXiv Detail & Related papers (2023-11-18T09:10:07Z) - Advancing Adversarial Robustness Through Adversarial Logit Update [10.041289551532804]
Adversarial training and adversarial purification are among the most widely recognized defense strategies.
We propose a new principle, namely Adversarial Logit Update (ALU), to infer adversarial sample's labels.
Our solution achieves superior performance compared to state-of-the-art methods against a wide range of adversarial attacks.
arXiv Detail & Related papers (2023-08-29T07:13:31Z) - Robust Feature Inference: A Test-time Defense Strategy using Spectral Projections [12.807619042576018]
We propose a novel test-time defense strategy called Robust Feature Inference (RFI)
RFI is easy to integrate with any existing (robust) training procedure without additional test-time computation.
We show that RFI improves robustness across adaptive and transfer attacks consistently.
arXiv Detail & Related papers (2023-07-21T16:18:58Z) - Making Substitute Models More Bayesian Can Enhance Transferability of
Adversarial Examples [89.85593878754571]
transferability of adversarial examples across deep neural networks is the crux of many black-box attacks.
We advocate to attack a Bayesian model for achieving desirable transferability.
Our method outperforms recent state-of-the-arts by large margins.
arXiv Detail & Related papers (2023-02-10T07:08:13Z) - TSFool: Crafting Highly-Imperceptible Adversarial Time Series through Multi-Objective Attack [6.243453526766042]
We propose an efficient method called TSFool to craft highly-imperceptible adversarial time series for RNN-based TSC.
The core idea is a new global optimization objective known as "Camouflage Coefficient" that captures the imperceptibility of adversarial samples from the class distribution.
Experiments on 11 UCR and UEA datasets showcase that TSFool significantly outperforms six white-box and three black-box benchmark attacks.
arXiv Detail & Related papers (2022-09-14T03:02:22Z) - A Multi-objective Memetic Algorithm for Auto Adversarial Attack
Optimization Design [1.9100854225243937]
Well-designed adversarial defense strategies can improve the robustness of deep learning models against adversarial examples.
Given the defensed model, the efficient adversarial attack with less computational burden and lower robust accuracy is needed to be further exploited.
We propose a multi-objective memetic algorithm for auto adversarial attack optimization design, which realizes the automatical search for the near-optimal adversarial attack towards defensed models.
arXiv Detail & Related papers (2022-08-15T03:03:05Z) - Robust Trajectory Prediction against Adversarial Attacks [84.10405251683713]
Trajectory prediction using deep neural networks (DNNs) is an essential component of autonomous driving systems.
These methods are vulnerable to adversarial attacks, leading to serious consequences such as collisions.
In this work, we identify two key ingredients to defend trajectory prediction models against adversarial attacks.
arXiv Detail & Related papers (2022-07-29T22:35:05Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification.
To defend against such attacks, an effective approach, known as adversarial training (AT), has been shown to mitigate robust training.
We propose a large-batch adversarial training framework implemented over multiple machines.
arXiv Detail & Related papers (2022-06-13T15:39:43Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
Adversarial training (AT) is among the most effective techniques to improve model robustness by augmenting training data with adversarial examples.
Most existing AT methods adopt a specific attack to craft adversarial examples, leading to the unreliable robustness against other unseen attacks.
In this paper, we introduce adversarial distributional training (ADT), a novel framework for learning robust models.
arXiv Detail & Related papers (2020-02-14T12:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.