論文の概要: WonderVerse: Extendable 3D Scene Generation with Video Generative Models
- arxiv url: http://arxiv.org/abs/2503.09160v3
- Date: Sat, 15 Mar 2025 03:20:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:36:33.552917
- Title: WonderVerse: Extendable 3D Scene Generation with Video Generative Models
- Title(参考訳): WonderVerse:ビデオ生成モデルによる拡張可能な3Dシーン生成
- Authors: Hao Feng, Zhi Zuo, Jia-Hui Pan, Ka-Hei Hui, Yihua Shao, Qi Dou, Wei Xie, Zhengzhe Liu,
- Abstract要約: 拡張可能な3Dシーンを生成するフレームワークであるWonderVerseを紹介する。
WonderVerseは、ビデオ生成基盤モデルに埋め込まれた強力な世界レベルの事前情報を活用する。
様々な3D再構成手法と互換性があり、効率的かつ高品質な生成を可能にする。
- 参考スコア(独自算出の注目度): 28.002645364066005
- License:
- Abstract: We introduce \textit{WonderVerse}, a simple but effective framework for generating extendable 3D scenes. Unlike existing methods that rely on iterative depth estimation and image inpainting, often leading to geometric distortions and inconsistencies, WonderVerse leverages the powerful world-level priors embedded within video generative foundation models to create highly immersive and geometrically coherent 3D environments. Furthermore, we propose a new technique for controllable 3D scene extension to substantially increase the scale of the generated environments. Besides, we introduce a novel abnormal sequence detection module that utilizes camera trajectory to address geometric inconsistency in the generated videos. Finally, WonderVerse is compatible with various 3D reconstruction methods, allowing both efficient and high-quality generation. Extensive experiments on 3D scene generation demonstrate that our WonderVerse, with an elegant and simple pipeline, delivers extendable and highly-realistic 3D scenes, markedly outperforming existing works that rely on more complex architectures.
- Abstract(参考訳): 拡張可能な3Dシーンを生成するためのシンプルだが効果的なフレームワークである。
反復的な深さ推定や画像のインペイントに依存する既存の手法とは異なり、WonderVerseは、ビデオ生成基盤モデルに埋め込まれた強力な世界レベルの事前情報を活用して、高度に没入的で幾何学的に整合した3D環境を作成する。
さらに,生成環境のスケールを大幅に向上させるため,制御可能な3Dシーン拡張のための新しい手法を提案する。
さらに,ビデオの幾何学的不整合に対処するために,カメラ軌道を用いた新たな異常シーケンス検出モジュールを導入する。
最後に、WonderVerseは様々な3D再構成手法と互換性があり、効率的かつ高品質な生成を可能にする。
3Dシーン生成に関する大規模な実験によると、WonderVerseはエレガントでシンプルなパイプラインで、拡張可能でリアルな3Dシーンを提供します。
関連論文リスト
- Wonderland: Navigating 3D Scenes from a Single Image [43.99037613068823]
本研究では,映像拡散モデルから潜伏木を用いた大規模再構成モデルを導入し,シーンの3次元ガウススプラッティングを予測する。
プログレッシブトレーニング戦略により,映像潜時空間上での3D再構成モデルをトレーニングし,高品質,広スコープ,汎用的な3Dシーンの効率的な生成を可能にする。
論文 参考訳(メタデータ) (2024-12-16T18:58:17Z) - InfiniCube: Unbounded and Controllable Dynamic 3D Driving Scene Generation with World-Guided Video Models [75.03495065452955]
InfiniCubeはダイナミックな3次元駆動シーンを高忠実かつ制御性で生成するスケーラブルな方法である。
制御可能でリアルな3Dドライビングシーンを生成でき、モデルの有効性と優越性を広範囲にわたる実験により検証できる。
論文 参考訳(メタデータ) (2024-12-05T07:32:20Z) - Hi3D: Pursuing High-Resolution Image-to-3D Generation with Video Diffusion Models [112.2625368640425]
High- resolution Image-to-3D model (Hi3D) はビデオ拡散に基づく新しいパラダイムであり、単一の画像を3D対応シーケンシャル画像生成としてマルチビュー画像に再定義する。
Hi3Dは事前に学習した映像拡散モデルを3D対応で強化し、低解像度のテクスチャディテールを持つマルチビュー画像を生成する。
論文 参考訳(メタデータ) (2024-09-11T17:58:57Z) - 3D-SceneDreamer: Text-Driven 3D-Consistent Scene Generation [51.64796781728106]
本稿では,2次元拡散モデル以前の自然画像と,現在のシーンのグローバルな3次元情報を利用して,高品質で新しいコンテンツを合成する生成的精細化ネットワークを提案する。
提案手法は,視覚的品質と3次元の整合性を改善した多種多様なシーン生成と任意のカメラトラジェクトリをサポートする。
論文 参考訳(メタデータ) (2024-03-14T14:31:22Z) - CC3D: Layout-Conditioned Generation of Compositional 3D Scenes [49.281006972028194]
本稿では,複雑な3次元シーンを2次元セマンティックなシーンレイアウトで合成する条件生成モデルであるCC3Dを紹介する。
合成3D-FRONTと実世界のKITTI-360データセットに対する評価は、我々のモデルが視覚的および幾何学的品質を改善したシーンを生成することを示す。
論文 参考訳(メタデータ) (2023-03-21T17:59:02Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
フォトリアリスティック・ノベルビューを合成可能な高忠実度3次元生成対向ネットワーク(GAN)インバージョン・フレームワークを提案する。
提案手法は,1枚の画像から高忠実度3Dレンダリングを可能にし,AI生成3Dコンテンツの様々な応用に期待できる。
論文 参考訳(メタデータ) (2022-11-28T18:59:52Z) - XDGAN: Multi-Modal 3D Shape Generation in 2D Space [60.46777591995821]
本稿では,3次元形状をコンパクトな1チャネル幾何画像に変換し,StyleGAN3と画像間翻訳ネットワークを利用して2次元空間で3次元オブジェクトを生成する手法を提案する。
生成された幾何学画像は素早く3Dメッシュに変換し、リアルタイムな3Dオブジェクト合成、可視化、インタラクティブな編集を可能にする。
近年の3次元生成モデルと比較して,より高速かつ柔軟な3次元形状生成,単一ビュー再構成,形状操作などの様々なタスクにおいて,本手法が有効であることを示す。
論文 参考訳(メタデータ) (2022-10-06T15:54:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。