論文の概要: Revealing the Implicit Noise-based Imprint of Generative Models
- arxiv url: http://arxiv.org/abs/2503.09314v1
- Date: Wed, 12 Mar 2025 12:04:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-13 15:39:11.477031
- Title: Revealing the Implicit Noise-based Imprint of Generative Models
- Title(参考訳): 暗騒音に基づく生成モデルのインプリントに関する研究
- Authors: Xinghan Li, Jingjing Chen, Yue Yu, Xue Song, Haijun Shan, Yu-Gang Jiang,
- Abstract要約: 本稿では,検出タスクにノイズに基づくモデル固有インプリントを利用する新しいフレームワークを提案する。
様々な生成モデルからのインプリントを集約することにより、将来のモデルのインプリントを外挿してトレーニングデータを拡張することができる。
提案手法は,GenImage,Synthbuster,Chameleonの3つの公開ベンチマークにおいて,最先端のパフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 71.94916898756684
- License:
- Abstract: With the rapid advancement of vision generation models, the potential security risks stemming from synthetic visual content have garnered increasing attention, posing significant challenges for AI-generated image detection. Existing methods suffer from inadequate generalization capabilities, resulting in unsatisfactory performance on emerging generative models. To address this issue, this paper presents a novel framework that leverages noise-based model-specific imprint for the detection task. Specifically, we propose a novel noise-based imprint simulator to capture intrinsic patterns imprinted in images generated by different models. By aggregating imprints from various generative models, imprints of future models can be extrapolated to expand training data, thereby enhancing generalization and robustness. Furthermore, we design a new pipeline that pioneers the use of noise patterns, derived from a noise-based imprint extractor, alongside other visual features for AI-generated image detection, resulting in a significant improvement in performance. Our approach achieves state-of-the-art performance across three public benchmarks including GenImage, Synthbuster and Chameleon.
- Abstract(参考訳): 視覚生成モデルの急速な進歩により、合成視覚コンテンツから生じる潜在的なセキュリティリスクが注目され、AI生成画像検出の重要な課題となっている。
既存の手法は、不適切な一般化能力に悩まされ、新たな生成モデルに対して不満足なパフォーマンスをもたらす。
この問題に対処するために,本研究では,ノイズに基づくモデル固有インプリントを利用した新しいフレームワークを提案する。
具体的には、異なるモデルによって生成された画像に固有パターンを印字する新しいノイズベースインプリントシミュレータを提案する。
様々な生成モデルからのインプリントを集約することにより、将来のモデルのインプリントを外挿してトレーニングデータを拡張し、一般化と堅牢性を高めることができる。
さらに、ノイズベースのインプリント抽出器から派生したノイズパターンを進化させる新しいパイプラインを設計し、AI生成画像検出のための他の視覚的特徴と組み合わせることで、性能が大幅に向上した。
提案手法は,GenImage,Synthbuster,Chameleonの3つの公開ベンチマークにおいて,最先端のパフォーマンスを実現する。
関連論文リスト
- Understanding Representation Dynamics of Diffusion Models via Low-Dimensional Modeling [25.705179111920806]
この研究は、拡散モデルが高品質な表現を自己指導的に学習する上で優れている理由と時期に関する問題に対処する。
我々は低次元データモデルと後続推定に基づく数学的枠組みを開発し、画像生成の最終段階に近い生成と表現品質の基本的なトレードオフを明らかにする。
これらの知見に基づいて,ノイズレベルをまたいだ特徴を集約するアンサンブル法を提案し,ラベル雑音下でのクリーンな性能とロバスト性の両方を著しく改善する。
論文 参考訳(メタデータ) (2025-02-09T01:58:28Z) - Enhancing Diffusion Models for High-Quality Image Generation [0.0]
本稿では,拡散確率モデル(DDPM)と拡散確率モデル(DDIM)の総合的な実装,評価,最適化について述べる。
推論中、これらのモデルはランダムノイズを入力とし、高画質な画像を出力として繰り返し生成する。
この研究の背景にあるのは、さまざまなデータセットをまたいだリアルなイメージを生成可能な、効率的でスケーラブルな生成AIモデルの需要が高まっていることだ。
論文 参考訳(メタデータ) (2024-12-19T00:23:15Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - One Noise to Rule Them All: Learning a Unified Model of Spatially-Varying Noise Patterns [33.293193191683145]
本稿では,複数種類のノイズを生成できる単一生成モデルを提案する。
また, 逆手続き材料設計の改善に本モデルを適用した。
論文 参考訳(メタデータ) (2024-04-25T02:23:11Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Blue noise for diffusion models [50.99852321110366]
本稿では,画像内および画像間の相関雑音を考慮した拡散モデルを提案する。
我々のフレームワークは、勾配流を改善するために、1つのミニバッチ内に画像間の相関を導入することができる。
本手法を用いて,各種データセットの質的,定量的な評価を行う。
論文 参考訳(メタデータ) (2024-02-07T14:59:25Z) - RenAIssance: A Survey into AI Text-to-Image Generation in the Era of
Large Model [93.8067369210696]
テキスト・ツー・イメージ生成(テキスト・トゥ・イメージ・ジェネレーション、英: Text-to-image Generation、TTI)とは、テキスト入力を処理し、テキスト記述に基づいて高忠実度画像を生成するモデルである。
拡散モデル (diffusion model) は、繰り返しステップによるノイズの体系的導入を通じて画像の生成に使用される顕著な生成モデルである。
大規模モデルの時代、モデルサイズを拡大し、大規模言語モデルとの統合により、TTIモデルの性能がさらに向上した。
論文 参考訳(メタデータ) (2023-09-02T03:27:20Z) - Improving Few-shot Image Generation by Structural Discrimination and
Textural Modulation [10.389698647141296]
画像生成の目的は、このカテゴリからいくつかの画像が与えられた場合、あるカテゴリに対して可塑性で多様な画像を生成することである。
既存のアプローチでは、異なる画像をグローバルに補間するか、事前に定義された係数で局所表現を融合する。
本稿では,内部局所表現に外部意味信号を注入する新しいメカニズムを提案する。
論文 参考訳(メタデータ) (2023-08-30T16:10:21Z) - Model Synthesis for Zero-Shot Model Attribution [26.835046772924258]
生成モデルは、芸術、デザイン、人間とコンピュータの相互作用などの様々な分野を形作っている。
実世界の生成モデルの指紋パターンを模倣した多数の合成モデルを生成するモデル合成手法を提案する。
実験により, この指紋抽出装置は, 合成モデルのみを訓練し, 様々な実世界の生成モデルに対して, 印象的なゼロショットの一般化を実現することができた。
論文 参考訳(メタデータ) (2023-07-29T13:00:42Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
本研究では,残差畳み込み層の局所モデリング能力とスウィントランスブロックの非局所モデリング能力を組み込むスウィンコンブブロックを提案する。
トレーニングデータ合成のために,異なる種類のノイズを考慮した実用的なノイズ劣化モデルの設計を行う。
AGWN除去と実画像復号化の実験は、新しいネットワークアーキテクチャ設計が最先端の性能を達成することを実証している。
論文 参考訳(メタデータ) (2022-03-24T18:11:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。