GIGP: A Global Information Interacting and Geometric Priors Focusing Framework for Semi-supervised Medical Image Segmentation
- URL: http://arxiv.org/abs/2503.09355v1
- Date: Wed, 12 Mar 2025 12:59:38 GMT
- Title: GIGP: A Global Information Interacting and Geometric Priors Focusing Framework for Semi-supervised Medical Image Segmentation
- Authors: Lianyuan Yu, Xiuzhen Guo, Ji Shi, Hongxiao Wang, Hongwei Li,
- Abstract summary: We introduce a Global Information Interaction Mamba module to reduce distribution discrepancy between labeled and unlabeled data.<n>Secondly, we propose a Geometric Moment Attention Mechanism to extract richer global geometric features.<n>The superior performance on the NIH Pancreas and Left Atrium datasets demonstrates the effectiveness of our approach.
- Score: 5.478311497235159
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised learning enhances medical image segmentation by leveraging unlabeled data, reducing reliance on extensive labeled datasets. On the one hand, the distribution discrepancy between limited labeled data and abundant unlabeled data can hinder model generalization. Most existing methods rely on local similarity matching, which may introduce bias. In contrast, Mamba effectively models global context with linear complexity, learning more comprehensive data representations. On the other hand, medical images usually exhibit consistent anatomical structures defined by geometric features. Most existing methods fail to fully utilize global geometric priors, such as volumes, moments etc. In this work, we introduce a global information interaction and geometric priors focus framework (GIGP). Firstly, we present a Global Information Interaction Mamba module to reduce distribution discrepancy between labeled and unlabeled data. Secondly, we propose a Geometric Moment Attention Mechanism to extract richer global geometric features. Finally, we propose Global Geometric Perturbation Consistency to simulate organ dynamics and geometric variations, enhancing the ability of the model to learn generalized features. The superior performance on the NIH Pancreas and Left Atrium datasets demonstrates the effectiveness of our approach.
Related papers
- GeoMix: Towards Geometry-Aware Data Augmentation [76.09914619612812]
Mixup has shown considerable success in mitigating the challenges posed by limited labeled data in image classification.
We propose Geometric Mixup (GeoMix), a simple and interpretable Mixup approach leveraging in-place graph editing.
arXiv Detail & Related papers (2024-07-15T12:58:04Z) - GeoWizard: Unleashing the Diffusion Priors for 3D Geometry Estimation from a Single Image [94.56927147492738]
We introduce GeoWizard, a new generative foundation model designed for estimating geometric attributes from single images.
We show that leveraging diffusion priors can markedly improve generalization, detail preservation, and efficiency in resource usage.
We propose a simple yet effective strategy to segregate the complex data distribution of various scenes into distinct sub-distributions.
arXiv Detail & Related papers (2024-03-18T17:50:41Z) - Hierarchical Aggregations for High-Dimensional Multiplex Graph Embedding [7.271256448682229]
HMGE is a novel embedding method based on hierarchical aggregation for high-dimensional multiplex graphs.
We leverage mutual information between local patches and global summaries to train the model without supervision.
Detailed experiments on synthetic and real-world data illustrate the suitability of our approach to downstream supervised tasks.
arXiv Detail & Related papers (2023-12-28T05:39:33Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
We introduce a novel semi-supervised 2D medical image segmentation framework termed Mine yOur owN Anatomy (MONA)
First, prior work argues that every pixel equally matters to the model training; we observe empirically that this alone is unlikely to define meaningful anatomical features.
Second, we construct a set of objectives that encourage the model to be capable of decomposing medical images into a collection of anatomical features.
arXiv Detail & Related papers (2022-09-27T15:50:31Z) - Geometry Contrastive Learning on Heterogeneous Graphs [50.58523799455101]
This paper proposes a novel self-supervised learning method, termed as Geometry Contrastive Learning (GCL)
GCL views a heterogeneous graph from Euclidean and hyperbolic perspective simultaneously, aiming to make a strong merger of the ability of modeling rich semantics and complex structures.
Extensive experiments on four benchmarks data sets show that the proposed approach outperforms the strong baselines.
arXiv Detail & Related papers (2022-06-25T03:54:53Z) - Deep Relational Metric Learning [84.95793654872399]
This paper presents a deep relational metric learning framework for image clustering and retrieval.
We learn an ensemble of features that characterizes an image from different aspects to model both interclass and intraclass distributions.
Experiments on the widely-used CUB-200-2011, Cars196, and Stanford Online Products datasets demonstrate that our framework improves existing deep metric learning methods and achieves very competitive results.
arXiv Detail & Related papers (2021-08-23T09:31:18Z) - Multi-modal Entity Alignment in Hyperbolic Space [13.789898717291251]
We propose a novel multi-modal entity alignment approach, Hyperbolic multi-modal entity alignment(HMEA)
We first adopt the Hyperbolic Graph Convolutional Networks (HGCNs) to learn structural representations of entities.
We then combine the structure and visual representations in the hyperbolic space and use the aggregated embeddings to predict potential alignment results.
arXiv Detail & Related papers (2021-06-07T13:45:03Z) - MoCL: Contrastive Learning on Molecular Graphs with Multi-level Domain
Knowledge [28.386302970315736]
We propose a novel framework called MoCL, which utilizes domain knowledge at both local- and global-level to assist representation learning.
We evaluate MoCL on various molecular datasets under both linear and semi-supervised settings.
arXiv Detail & Related papers (2021-06-05T18:00:51Z) - Graph Geometry Interaction Learning [41.10468385822182]
We develop a novel Geometry Interaction Learning (GIL) method for graphs, a well-suited and efficient alternative for learning abundant geometric properties in graph.
Our method endows each node the freedom to determine the importance of each geometry space via a flexible dual feature interaction learning and probability assembling mechanism.
Promising experimental results are presented for five benchmark datasets on node classification and link prediction tasks.
arXiv Detail & Related papers (2020-10-23T02:40:28Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.