Multi-Agent Image Restoration
- URL: http://arxiv.org/abs/2503.09403v1
- Date: Wed, 12 Mar 2025 13:53:57 GMT
- Title: Multi-Agent Image Restoration
- Authors: Xu Jiang, Gehui Li, Bin Chen, Jian Zhang,
- Abstract summary: We propose MAIR, a novel Multi-Agent approach for complex IR problems.<n>Built upon a three-stage restoration framework, MAIR emulates a team of collaborative human specialists.<n>MAIR achieves competitive performance and improved efficiency over the previous agentic IR system.
- Score: 9.614197636859435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image restoration (IR) is challenging due to the complexity of real-world degradations. While many specialized and all-in-one IR models have been developed, they fail to effectively handle complex, mixed degradations. Recent agentic methods RestoreAgent and AgenticIR leverage intelligent, autonomous workflows to alleviate this issue, yet they suffer from suboptimal results and inefficiency due to their resource-intensive finetunings, and ineffective searches and tool execution trials for satisfactory outputs. In this paper, we propose MAIR, a novel Multi-Agent approach for complex IR problems. We introduce a real-world degradation prior, categorizing degradations into three types: (1) scene, (2) imaging, and (3) compression, which are observed to occur sequentially in real world, and reverse them in the opposite order. Built upon this three-stage restoration framework, MAIR emulates a team of collaborative human specialists, including a "scheduler" for overall planning and multiple "experts" dedicated to specific degradations. This design minimizes search space and trial efforts, improving image quality while reducing inference costs. In addition, a registry mechanism is introduced to enable easy integration of new tools. Experiments on both synthetic and real-world datasets show that proposed MAIR achieves competitive performance and improved efficiency over the previous agentic IR system. Code and models will be made available.
Related papers
- An Efficient and Mixed Heterogeneous Model for Image Restoration [71.85124734060665]
Current mainstream approaches are based on three architectural paradigms: CNNs, Transformers, and Mambas.
We propose RestorMixer, an efficient and general-purpose IR model based on mixed-architecture fusion.
arXiv Detail & Related papers (2025-04-15T08:19:12Z) - Mixed Degradation Image Restoration via Local Dynamic Optimization and Conditional Embedding [67.57487747508179]
Multiple-in-one image restoration (IR) has made significant progress, aiming to handle all types of single degraded image restoration with a single model.
In this paper, we propose a novel multiple-in-one IR model that can effectively restore images with both single and mixed degradations.
arXiv Detail & Related papers (2024-11-25T09:26:34Z) - An Intelligent Agentic System for Complex Image Restoration Problems [39.93819777300997]
AgenticIR mimics the human approach to image processing by following five key stages: Perception, Scheduling, Execution, Reflection, and Rescheduling.<n>We employ large language models (LLMs) and vision-language models (VLMs) that interact via text generation to operate a toolbox of IR models.<n> Experiments demonstrate AgenticIR's potential in handling complex IR tasks, representing a promising path toward achieving general intelligence in visual processing.
arXiv Detail & Related papers (2024-10-23T12:11:26Z) - LoRA-IR: Taming Low-Rank Experts for Efficient All-in-One Image Restoration [62.3751291442432]
We propose LoRA-IR, a flexible framework that dynamically leverages compact low-rank experts to facilitate efficient all-in-one image restoration.
LoRA-IR consists of two training stages: degradation-guided pre-training and parameter-efficient fine-tuning.
Experiments demonstrate that LoRA-IR achieves SOTA performance across 14 IR tasks and 29 benchmarks, while maintaining computational efficiency.
arXiv Detail & Related papers (2024-10-20T13:00:24Z) - MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning [17.437573206368494]
Visual deep reinforcement learning (RL) enables robots to acquire skills from visual input for unstructured tasks.
Current algorithms suffer from low sample efficiency, limiting their practical applicability.
We present MENTOR, a method that improves both the architecture and optimization of RL agents.
arXiv Detail & Related papers (2024-10-19T04:31:54Z) - Chain-of-Restoration: Multi-Task Image Restoration Models are Zero-Shot Step-by-Step Universal Image Restorers [53.298698981438]
This paper proposes a new task setting, i.e. Universal Image Restoration (UIR)<n>UIR doesn't require training on all the degradation combinations but only on a set of degradation bases and then removing any degradation that these bases can potentially compose in a zero-shot manner.<n>We propose Chain-of-Restoration (CoR) mechanism, which instructs models to remove unknown composite degradations step-by-step.
arXiv Detail & Related papers (2024-10-11T10:21:42Z) - RestoreAgent: Autonomous Image Restoration Agent via Multimodal Large Language Models [45.88103575837924]
We introduce RestoreAgent, an intelligent image restoration system leveraging multimodal large language models.
RestoreAgent autonomously assesses the type and extent of degradation in input images and performs restoration through (1) determining the appropriate restoration tasks, (2) optimizing the task sequence, (3) selecting the most suitable models, and (4) executing the restoration.
Experimental results demonstrate the superior performance of RestoreAgent in handling complex degradation, surpassing human experts.
arXiv Detail & Related papers (2024-07-25T13:29:37Z) - Efficient Degradation-aware Any Image Restoration [83.92870105933679]
We propose textitDaAIR, an efficient All-in-One image restorer employing a Degradation-aware Learner (DaLe) in the low-rank regime.
By dynamically allocating model capacity to input degradations, we realize an efficient restorer integrating holistic and specific learning.
arXiv Detail & Related papers (2024-05-24T11:53:27Z) - Forgetful Experience Replay in Hierarchical Reinforcement Learning from
Demonstrations [55.41644538483948]
In this paper, we propose a combination of approaches that allow the agent to use low-quality demonstrations in complex vision-based environments.
Our proposed goal-oriented structuring of replay buffer allows the agent to automatically highlight sub-goals for solving complex hierarchical tasks in demonstrations.
The solution based on our algorithm beats all the solutions for the famous MineRL competition and allows the agent to mine a diamond in the Minecraft environment.
arXiv Detail & Related papers (2020-06-17T15:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.