Chain-of-Restoration: Multi-Task Image Restoration Models are Zero-Shot Step-by-Step Universal Image Restorers
- URL: http://arxiv.org/abs/2410.08688v2
- Date: Wed, 04 Dec 2024 04:28:41 GMT
- Title: Chain-of-Restoration: Multi-Task Image Restoration Models are Zero-Shot Step-by-Step Universal Image Restorers
- Authors: Jin Cao, Deyu Meng, Xiangyong Cao,
- Abstract summary: This paper proposes a new task setting, i.e. Universal Image Restoration (UIR)
UIR doesn't require training on all the degradation combinations but only on a set of degradation bases and then removing any degradation that these bases can potentially compose in a zero-shot manner.
We propose Chain-of-Restoration (CoR) mechanism, which instructs models to remove unknown composite degradations step-by-step.
- Score: 53.298698981438
- License:
- Abstract: Despite previous image restoration (IR) methods have often concentrated on isolated degradations, recent research has increasingly focused on addressing composite degradations involving a complex combination of multiple isolated degradations. However, current IR methods for composite degradations require building training data that contain an exponential number of possible degradation combinations, which brings in a significant burden. To alleviate this issue, this paper proposes a new task setting, i.e. Universal Image Restoration (UIR). Specifically, UIR doesn't require training on all the degradation combinations but only on a set of degradation bases and then removing any degradation that these bases can potentially compose in a zero-shot manner. Inspired by the Chain-of-Thought that prompts large language models (LLMs) to address problems step-by-step, we propose Chain-of-Restoration (CoR) mechanism, which instructs models to remove unknown composite degradations step-by-step. By integrating a simple Degradation Discriminator into pre-trained multi-task models, CoR facilitates the process where models remove one degradation basis per step, continuing this process until the image is fully restored from the unknown composite degradation. Extensive experiments show that CoR can significantly improve model performance in removing composite degradations, achieving comparable or better results than those state-of-the-art (SoTA) methods trained on all degradations.
Related papers
- UniRestorer: Universal Image Restoration via Adaptively Estimating Image Degradation at Proper Granularity [79.90839080916913]
We present our UniRestorer with improved restoration performance.
Specifically, we perform hierarchical clustering on degradation space, and train a multi-granularity mixture-of-experts (MoE) restoration model.
In contrast to existing degradation-agnostic and -aware methods, UniRestorer can leverage degradation estimation to benefit degradationspecific restoration.
arXiv Detail & Related papers (2024-12-28T14:09:08Z) - Mixed Degradation Image Restoration via Local Dynamic Optimization and Conditional Embedding [67.57487747508179]
Multiple-in-one image restoration (IR) has made significant progress, aiming to handle all types of single degraded image restoration with a single model.
In this paper, we propose a novel multiple-in-one IR model that can effectively restore images with both single and mixed degradations.
arXiv Detail & Related papers (2024-11-25T09:26:34Z) - UIR-LoRA: Achieving Universal Image Restoration through Multiple Low-Rank Adaptation [50.27688690379488]
Existing unified methods treat multi-degradation image restoration as a multi-task learning problem.
We propose a universal image restoration framework based on multiple low-rank adapters (LoRA) from multi-domain transfer learning.
Our framework leverages the pre-trained generative model as the shared component for multi-degradation restoration and transfers it to specific degradation image restoration tasks.
arXiv Detail & Related papers (2024-09-30T11:16:56Z) - OneRestore: A Universal Restoration Framework for Composite Degradation [33.556183375565034]
In real-world scenarios, image impairments often manifest as composite degradations, presenting a complex interplay of elements such as low light, haze, rain, and snow.
Our study proposes a versatile imaging model that consolidates four physical corruption paradigms to accurately represent complex, composite degradation scenarios.
OneRestore is a novel transformer-based framework designed for adaptive, controllable scene restoration.
arXiv Detail & Related papers (2024-07-05T16:27:00Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
Diffusion model-based image restoration (IR) aims to use diffusion models to recover high-quality (HQ) images from degraded images, achieving promising performance.
Most existing methods need long serial sampling chains to restore HQ images step-by-step, resulting in expensive sampling time and high computation costs.
In this work, we aim to rethink the diffusion model-based IR models through a different perspective, i.e., a deep equilibrium (DEQ) fixed point system, called DeqIR.
arXiv Detail & Related papers (2023-11-20T08:27:56Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
Blind face restoration usually synthesizes degraded low-quality data with a pre-defined degradation model for training.
It is expensive and infeasible to include every type of degradation to cover real-world cases in the training data.
We propose Robust Degradation Remover (DR2) to first transform the degraded image to a coarse but degradation-invariant prediction, then employ an enhancement module to restore the coarse prediction to a high-quality image.
arXiv Detail & Related papers (2023-03-13T06:05:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.