Efficient dynamic modal load reconstruction using physics-informed Gaussian processes based on frequency-sparse Fourier basis functions
- URL: http://arxiv.org/abs/2503.09418v1
- Date: Wed, 12 Mar 2025 14:16:27 GMT
- Title: Efficient dynamic modal load reconstruction using physics-informed Gaussian processes based on frequency-sparse Fourier basis functions
- Authors: Gledson Rodrigo Tondo, Igor Kavrakov, Guido Morgenthal,
- Abstract summary: This paper presents an efficient dynamic load reconstruction method using physics-informed Gaussian processes (GP)<n>The GP's covariance matrices are built using the description of the system dynamics, and the model is trained using structural response measurements.<n>The developed model holds potential for applications in structural health monitoring, damage prognosis, and load model validation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge of the force time history of a structure is essential to assess its behaviour, ensure safety and maintain reliability. However, direct measurement of external forces is often challenging due to sensor limitations, unknown force characteristics, or inaccessible load points. This paper presents an efficient dynamic load reconstruction method using physics-informed Gaussian processes (GP) based on frequency-sparse Fourier basis functions. The GP's covariance matrices are built using the description of the system dynamics, and the model is trained using structural response measurements. This provides support and interpretability to the machine learning model, in contrast to purely data-driven methods. In addition, the model filters out irrelevant components in the Fourier basis function by leveraging the sparsity of structural responses in the frequency domain, thereby reducing computational complexity during optimization. The trained model for structural responses is then integrated with the differential equation for a harmonic oscillator, creating a probabilistic dynamic load model that predicts load patterns without requiring force data during training. The model's effectiveness is validated through two case studies: a numerical model of a wind-excited 76-story building and an experiment using a physical scale model of the Lilleb{\ae}lt Bridge in Denmark, excited by a servo motor. For both cases, validation of the reconstructed forces is provided using comparison metrics for several signal properties. The developed model holds potential for applications in structural health monitoring, damage prognosis, and load model validation.
Related papers
- Physics-integrated generative modeling using attentive planar normalizing flow based variational autoencoder [0.0]
We aim to improve the fidelity of reconstruction and to noise in the physics integrated generative model.
To improve the robustness of generative model against noise injected in the model, we propose a modification in the encoder part of the normalizing flow based VAE.
arXiv Detail & Related papers (2024-04-18T15:38:14Z) - SIP: Injecting a Structural Inductive Bias into a Seq2Seq Model by Simulation [75.14793516745374]
We show how a structural inductive bias can be efficiently injected into a seq2seq model by pre-training it to simulate structural transformations on synthetic data.
Our experiments show that our method imparts the desired inductive bias, resulting in better few-shot learning for FST-like tasks.
arXiv Detail & Related papers (2023-10-01T21:19:12Z) - A physics-informed machine learning model for reconstruction of dynamic
loads [0.0]
This paper presents a physics-informed machine-learning framework for reconstructing dynamic forces based on measured deflections, velocities, or accelerations.
The framework can work with incomplete and contaminated data and offers a natural regularization approach to account for noise measurement system.
Uses of the developed framework include design models and assumptions, as well as prognosis of responses to assist in damage detection and health monitoring.
arXiv Detail & Related papers (2023-08-15T18:33:58Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Using scientific machine learning for experimental bifurcation analysis
of dynamic systems [2.204918347869259]
This study focuses on training universal differential equation (UDE) models for physical nonlinear dynamical systems with limit cycles.
We consider examples where training data is generated by numerical simulations, whereas we also employ the proposed modelling concept to physical experiments.
We use both neural networks and Gaussian processes as universal approximators alongside the mechanistic models to give a critical assessment of the accuracy and robustness of the UDE modelling approach.
arXiv Detail & Related papers (2021-10-22T15:43:03Z) - Data-driven Aerodynamic Analysis of Structures using Gaussian Processes [0.0]
This paper presents a data-driven model of the nonlinear self-excited forces acting on bridges.
The framework is applied to a streamlined and bluff bridge deck based on Computational Fluid Dynamics (CFD) data.
Further applications of the presented framework are foreseen in the design and online real-time monitoring of slender line-like structures.
arXiv Detail & Related papers (2021-03-20T11:22:24Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - A physics-informed operator regression framework for extracting
data-driven continuum models [0.0]
We present a framework for discovering continuum models from high fidelity molecular simulation data.
Our approach applies a neural network parameterization of governing physics in modal space.
We demonstrate the effectiveness of our framework for a variety of physics, including local and nonlocal diffusion processes and single and multiphase flows.
arXiv Detail & Related papers (2020-09-25T01:13:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.