論文の概要: Sparse Autoencoder as a Zero-Shot Classifier for Concept Erasing in Text-to-Image Diffusion Models
- arxiv url: http://arxiv.org/abs/2503.09446v2
- Date: Tue, 18 Mar 2025 09:12:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 10:31:58.788362
- Title: Sparse Autoencoder as a Zero-Shot Classifier for Concept Erasing in Text-to-Image Diffusion Models
- Title(参考訳): テキスト・画像拡散モデルにおける概念消去のためのゼロショット分類器としてのスパースオートエンコーダ
- Authors: Zhihua Tian, Sirun Nan, Ming Xu, Shengfang Zhai, Wenjie Qu, Jian Liu, Kui Ren, Ruoxi Jia, Jiaheng Zhang,
- Abstract要約: Interpret then Deactivate (ItD) は、T2I拡散モデルにおける正確な概念除去を可能にする新しいフレームワークである。
ItDはスパースオートエンコーダを使用して、各概念を複数の機能の組み合わせとして解釈する。
さらなるトレーニングを必要とせずに、簡単に複数の概念を消去できる。
- 参考スコア(独自算出の注目度): 24.15603438969762
- License:
- Abstract: Text-to-image (T2I) diffusion models have achieved remarkable progress in generating high-quality images but also raise people's concerns about generating harmful or misleading content. While extensive approaches have been proposed to erase unwanted concepts without requiring retraining from scratch, they inadvertently degrade performance on normal generation tasks. In this work, we propose Interpret then Deactivate (ItD), a novel framework to enable precise concept removal in T2I diffusion models while preserving overall performance. ItD first employs a sparse autoencoder (SAE) to interpret each concept as a combination of multiple features. By permanently deactivating the specific features associated with target concepts, we repurpose SAE as a zero-shot classifier that identifies whether the input prompt includes target concepts, allowing selective concept erasure in diffusion models. Moreover, we demonstrate that ItD can be easily extended to erase multiple concepts without requiring further training. Comprehensive experiments across celebrity identities, artistic styles, and explicit content demonstrate ItD's effectiveness in eliminating targeted concepts without interfering with normal concept generation. Additionally, ItD is also robust against adversarial prompts designed to circumvent content filters. Code is available at: https://github.com/NANSirun/Interpret-then-deactivate.
- Abstract(参考訳): テキスト・ツー・イメージ(T2I)拡散モデルは,高品質な画像の生成において顕著な進歩を遂げている。
スクラッチから再トレーニングを必要とせずに不要な概念を消去する広範囲なアプローチが提案されているが、通常の生成タスクでは必然的に性能を低下させる。
本研究では,T2I拡散モデルにおける正確な概念除去を実現するための新しいフレームワークであるInterpret then Deactivate (ItD)を提案する。
ItDはまずスパースオートエンコーダ(SAE)を使用して、各概念を複数の機能の組み合わせとして解釈する。
対象概念に関連する特定の特徴を恒久的に非活性化することにより、SAEをゼロショット分類器として再利用し、入力プロンプトが対象概念を含むかどうかを識別し、拡散モデルにおける選択的概念消去を可能にする。
さらに、ItDを拡張して複数の概念を削除し、さらなるトレーニングを必要とせずに簡単に拡張できることを実証する。
有名人のアイデンティティ、芸術的スタイル、明示的な内容にわたる総合的な実験は、通常の概念生成に干渉することなく、ターゲット概念を排除したItDの有効性を実証している。
さらに、ItDはコンテンツフィルタを回避するために設計された敵のプロンプトに対して堅牢である。
コードは、https://github.com/NANSirun/Interpret-then-deactivateで入手できる。
関連論文リスト
- Concept Steerers: Leveraging K-Sparse Autoencoders for Controllable Generations [10.86252546314626]
テキスト・ツー・イメージ生成モデルは、敵対的な攻撃をしがちであり、不安全で非倫理的なコンテンツを不注意に生成する。
我々は,k-スパースオートエンコーダ(k-SAE)を活用して,効率的な,解釈可能な概念操作を実現する新しいフレームワークを提案する。
提案手法は, 安全でない概念除去において$mathbf20.01%$の改善を実現し, スタイル操作に有効であり, 現在の最先端技術よりも$mathbfsim5$x高速である。
論文 参考訳(メタデータ) (2025-01-31T11:52:47Z) - SAeUron: Interpretable Concept Unlearning in Diffusion Models with Sparse Autoencoders [4.013156524547073]
拡散モデルは、必然的に有害または望ましくないコンテンツを生成できる。
最近の機械学習アプローチは潜在的な解決策を提供するが、透明性を欠いていることが多い。
スパースオートエンコーダによって学習された特徴を活用する新しい手法であるSAeUronを紹介する。
論文 参考訳(メタデータ) (2025-01-29T23:29:47Z) - DuMo: Dual Encoder Modulation Network for Precise Concept Erasure [75.05165577219425]
非ターゲット概念に対する最小限の障害を伴う不適切なターゲット概念の正確な消去を実現するDuMo(Dual Encoder Modulation Network)を提案する。
提案手法は, 明示的コンテンツ消去, カートゥーン概念除去, アーティスティックスタイル消去における最先端性能を実現し, 代替手法よりも明らかに優れている。
論文 参考訳(メタデータ) (2025-01-02T07:47:34Z) - EraseAnything: Enabling Concept Erasure in Rectified Flow Transformers [33.195628798316754]
EraseAnythingは、最新のフローベースのT2Iフレームワークにおける概念消去に対処するために特別に開発された最初の方法である。
概念消去を二段階最適化問題として定式化し,LoRAに基づくパラメータチューニングとアテンションマップ正規化器を用いた。
本研究では,意図しない概念の除去が意図せず,無関係な概念のパフォーマンスを損なうことのない自己矛盾型学習戦略を提案する。
論文 参考訳(メタデータ) (2024-12-29T09:42:53Z) - How to Continually Adapt Text-to-Image Diffusion Models for Flexible Customization? [91.49559116493414]
本稿では,CIDM(Concept-Incremental Text-to-image Diffusion Model)を提案する。
破滅的な忘れと概念の無視を解決し、新しいカスタマイズタスクを概念的な方法で学習する。
実験により、CIDMが既存のカスタム拡散モデルを上回ることが確認された。
論文 参考訳(メタデータ) (2024-10-23T06:47:29Z) - Reliable and Efficient Concept Erasure of Text-to-Image Diffusion Models [76.39651111467832]
本稿では,Reliable and Efficient Concept Erasure (RECE)を提案する。
派生した埋め込みによって表現される不適切なコンテンツを緩和するために、RECEはそれらをクロスアテンション層における無害な概念と整合させる。
新たな表現埋め込みの導出と消去を反復的に行い、不適切な概念の徹底的な消去を実現する。
論文 参考訳(メタデータ) (2024-07-17T08:04:28Z) - Six-CD: Benchmarking Concept Removals for Benign Text-to-image Diffusion Models [58.74606272936636]
テキスト・ツー・イメージ(T2I)拡散モデルは、テキスト・プロンプトと密接に対応した画像を生成する際、例外的な機能を示す。
モデルは、暴力やヌードの画像を生成したり、不適切な文脈で公共の人物の無許可の肖像画を作成するなど、悪意ある目的のために利用することができる。
悪質な概念や望ましくない概念の発生を防ぐために拡散モデルを変更する概念除去法が提案されている。
論文 参考訳(メタデータ) (2024-06-21T03:58:44Z) - All but One: Surgical Concept Erasing with Model Preservation in
Text-to-Image Diffusion Models [22.60023885544265]
大規模なデータセットには、性的に明示的な、著作権のある、または望ましくないコンテンツが含まれており、モデルがそれらを直接生成することができる。
拡散モデルにおける概念消去に取り組むために、ファインチューニングアルゴリズムが開発された。
これらの課題をすべて解決する新しいアプローチを提示します。
論文 参考訳(メタデータ) (2023-12-20T07:04:33Z) - Receler: Reliable Concept Erasing of Text-to-Image Diffusion Models via Lightweight Erasers [24.64639078273091]
テキストから画像への拡散モデルにおける概念消去は、対象概念に関連する画像の生成から事前学習された拡散モデルを無効にすることを目的としている。
軽量エローザ(レセラー)による信頼性概念消去の提案
論文 参考訳(メタデータ) (2023-11-29T15:19:49Z) - Implicit Concept Removal of Diffusion Models [92.55152501707995]
テキスト・ツー・イメージ(T2I)拡散モデルはしばしば、透かしや安全でない画像のような望ましくない概念を不注意に生成する。
幾何学駆動制御に基づく新しい概念除去手法であるGeom-Erasingを提案する。
論文 参考訳(メタデータ) (2023-10-09T17:13:10Z) - Forget-Me-Not: Learning to Forget in Text-to-Image Diffusion Models [79.50701155336198]
textbfForget-Me-Notは、適切に設定されたテキスト・ツー・イメージモデルから、指定されたID、オブジェクト、スタイルを30秒で安全に削除するように設計されている。
我々は,Forget-Me-Notが,モデルの性能を他の概念に保ちながら,ターゲットとなる概念を効果的に排除できることを実証した。
また、Stable Diffusionの軽量モデルパッチとして適応することができ、コンセプト操作と便利な配布を可能にしている。
論文 参考訳(メタデータ) (2023-03-30T17:58:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。