The R2D2 Deep Neural Network Series for Scalable Non-Cartesian Magnetic Resonance Imaging
- URL: http://arxiv.org/abs/2503.09559v2
- Date: Thu, 13 Mar 2025 09:35:19 GMT
- Title: The R2D2 Deep Neural Network Series for Scalable Non-Cartesian Magnetic Resonance Imaging
- Authors: Yiwei Chen, Amir Aghabiglou, Shijie Chen, Motahare Torki, Chao Tang, Ruud B. van Heeswijk, Yves Wiaux,
- Abstract summary: We introduce the R2D2 Deep Neural Network (DNN) series paradigm for fast and scalable image reconstruction from non-Cartesian k-space acquisitions in MRI.<n>A series with only few DNNs achieves superior reconstruction quality over its unrolled incarnation R2D2-Net.
- Score: 7.220567225059911
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce the R2D2 Deep Neural Network (DNN) series paradigm for fast and scalable image reconstruction from highly-accelerated non-Cartesian k-space acquisitions in Magnetic Resonance Imaging (MRI). While unrolled DNN architectures provide a robust image formation approach via data-consistency layers, embedding non-uniform fast Fourier transform operators in a DNN can become impractical to train at large scale, e.g in 2D MRI with a large number of coils, or for higher-dimensional imaging. Plug-and-play approaches that alternate a learned denoiser blind to the measurement setting with a data-consistency step are not affected by this limitation but their highly iterative nature implies slow reconstruction. To address this scalability challenge, we leverage the R2D2 paradigm that was recently introduced to enable ultra-fast reconstruction for large-scale Fourier imaging in radio astronomy. R2D2's reconstruction is formed as a series of residual images iteratively estimated as outputs of DNN modules taking the previous iteration's data residual as input. The method can be interpreted as a learned version of the Matching Pursuit algorithm. A series of R2D2 DNN modules were sequentially trained in a supervised manner on the fastMRI dataset and validated for 2D multi-coil MRI in simulation and on real data, targeting highly under-sampled radial k-space sampling. Results suggest that a series with only few DNNs achieves superior reconstruction quality over its unrolled incarnation R2D2-Net (whose training is also much less scalable), and over the state-of-the-art diffusion-based "Decomposed Diffusion Sampler" approach (also characterised by a slower reconstruction process).
Related papers
- Pixel to Gaussian: Ultra-Fast Continuous Super-Resolution with 2D Gaussian Modeling [50.34513854725803]
Arbitrary-scale super-resolution (ASSR) aims to reconstruct high-resolution (HR) images from low-resolution (LR) inputs with arbitrary upsampling factors.<n>We propose a novel ContinuousSR framework with a Pixel-to-Gaussian paradigm, which explicitly reconstructs 2D continuous HR signals from LR images using Gaussian Splatting.
arXiv Detail & Related papers (2025-03-09T13:43:57Z) - Towards a robust R2D2 paradigm for radio-interferometric imaging: revisiting DNN training and architecture [3.5872880578234816]
The R2D2 Deep Neural Network (DNN) series was recently introduced for image formation in radio interferometry.<n>We revisit R2D2 on the grounds of series convergence, training methodology, and DNN architecture.<n>We introduce a convergence criterion whereby the reconstruction process stops when the data residual is compatible with noise.
arXiv Detail & Related papers (2025-03-04T12:26:45Z) - DSplats: 3D Generation by Denoising Splats-Based Multiview Diffusion Models [67.50989119438508]
We introduce DSplats, a novel method that directly denoises multiview images using Gaussian-based Reconstructors to produce realistic 3D assets.<n>Our experiments demonstrate that DSplats not only produces high-quality, spatially consistent outputs, but also sets a new standard in single-image to 3D reconstruction.
arXiv Detail & Related papers (2024-12-11T07:32:17Z) - R2D2 image reconstruction with model uncertainty quantification in radio astronomy [1.7249361224827533]
The Residual-to-Residual'' (R2D2) approach was recently introduced for Radio-Interferometric (RI) imaging in astronomy.
R2D2's reconstruction is formed as a series of residual images, iteratively estimated as outputs of Deep Neural Networks (DNNs)
We study the robustness of the R2D2 image estimation process, by studying the uncertainty associated with its series of learned models.
arXiv Detail & Related papers (2024-03-26T19:10:08Z) - Scalable Non-Cartesian Magnetic Resonance Imaging with R2D2 [6.728969294264806]
We propose a new approach for non-esian magnetic resonance image reconstruction.
We leverage the "Residual to-Residual DNN series for high range imaging (R2D2)"
arXiv Detail & Related papers (2024-03-26T17:45:06Z) - The R2D2 deep neural network series paradigm for fast precision imaging in radio astronomy [1.7249361224827533]
Recent image reconstruction techniques have remarkable capability for imaging precision, well beyond CLEAN's capability.
We introduce a novel deep learning approach, dubbed "Residual-to-Residual DNN series for high-Dynamic range imaging"
R2D2's capability to deliver high precision is demonstrated in simulation, across a variety image observation settings using the Very Large Array (VLA)
arXiv Detail & Related papers (2024-03-08T16:57:54Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - CLEANing Cygnus A deep and fast with R2D2 [1.7249361224827533]
A novel deep learning paradigm for synthesis imaging by radio interferometry in astronomy was recently proposed, dubbed "Residual-to-Residual DNN series for high-Dynamic range imaging" (R2D2)
We show that R2D2's learning approach enables delivering high-precision imaging, superseding the resolution of CLEAN, and matching the precision of modern optimization and plug-and-play algorithms, respectively uSARA and AIRI.
arXiv Detail & Related papers (2023-09-06T18:11:09Z) - Image Reconstruction for Accelerated MR Scan with Faster Fourier
Convolutional Neural Networks [87.87578529398019]
Partial scan is a common approach to accelerate Magnetic Resonance Imaging (MRI) data acquisition in both 2D and 3D settings.
We propose a novel convolutional operator called Faster Fourier Convolution (FasterFC) to replace the two consecutive convolution operations.
A 2D accelerated MRI method, FasterFC-End-to-End-VarNet, which uses FasterFC to improve the sensitivity maps and reconstruction quality.
A 3D accelerated MRI method called FasterFC-based Single-to-group Network (FAS-Net) that utilizes a single-to-group algorithm to guide k-space domain reconstruction
arXiv Detail & Related papers (2023-06-05T13:53:57Z) - Multi-scale Transformer Network with Edge-aware Pre-training for
Cross-Modality MR Image Synthesis [52.41439725865149]
Cross-modality magnetic resonance (MR) image synthesis can be used to generate missing modalities from given ones.
Existing (supervised learning) methods often require a large number of paired multi-modal data to train an effective synthesis model.
We propose a Multi-scale Transformer Network (MT-Net) with edge-aware pre-training for cross-modality MR image synthesis.
arXiv Detail & Related papers (2022-12-02T11:40:40Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
Unrolled neural networks have recently achieved state-of-the-art accelerated MRI reconstruction.
These networks unroll iterative optimization algorithms by alternating between physics-based consistency and neural-network based regularization.
We propose Greedy LEarning for Accelerated MRI reconstruction, an efficient training strategy for high-dimensional imaging settings.
arXiv Detail & Related papers (2022-07-18T06:01:29Z) - Deep Neural Networks are Surprisingly Reversible: A Baseline for
Zero-Shot Inversion [90.65667807498086]
This paper presents a zero-shot direct model inversion framework that recovers the input to the trained model given only the internal representation.
We empirically show that modern classification models on ImageNet can, surprisingly, be inverted, allowing an approximate recovery of the original 224x224px images from a representation after more than 20 layers.
arXiv Detail & Related papers (2021-07-13T18:01:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.