CLEANing Cygnus A deep and fast with R2D2
- URL: http://arxiv.org/abs/2309.03291v3
- Date: Tue, 23 Apr 2024 17:32:37 GMT
- Title: CLEANing Cygnus A deep and fast with R2D2
- Authors: Arwa Dabbech, Amir Aghabiglou, Chung San Chu, Yves Wiaux,
- Abstract summary: A novel deep learning paradigm for synthesis imaging by radio interferometry in astronomy was recently proposed, dubbed "Residual-to-Residual DNN series for high-Dynamic range imaging" (R2D2)
We show that R2D2's learning approach enables delivering high-precision imaging, superseding the resolution of CLEAN, and matching the precision of modern optimization and plug-and-play algorithms, respectively uSARA and AIRI.
- Score: 1.7249361224827533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A novel deep learning paradigm for synthesis imaging by radio interferometry in astronomy was recently proposed, dubbed "Residual-to-Residual DNN series for high-Dynamic range imaging" (R2D2). In this work, we start by shedding light on R2D2's algorithmic structure, interpreting it as a learned version of CLEAN with minor cycles substituted with a deep neural network (DNN) whose training is iteration-specific. We then proceed with R2D2's first demonstration on real data, for monochromatic intensity imaging of the radio galaxy Cygnus A from S band observations with the Very Large Array (VLA). We show that the modeling power of R2D2's learning approach enables delivering high-precision imaging, superseding the resolution of CLEAN, and matching the precision of modern optimization and plug-and-play algorithms, respectively uSARA and AIRI. Requiring few major-cycle iterations only, R2D2 provides a much faster reconstruction than uSARA and AIRI, known to be highly iterative, and is at least as fast as CLEAN.
Related papers
- bit2bit: 1-bit quanta video reconstruction via self-supervised photon prediction [57.199618102578576]
We propose bit2bit, a new method for reconstructing high-quality image stacks at original resolution from sparse binary quantatemporal image data.
Inspired by recent work on Poisson denoising, we developed an algorithm that creates a dense image sequence from sparse binary photon data.
We present a novel dataset containing a wide range of real SPAD high-speed videos under various challenging imaging conditions.
arXiv Detail & Related papers (2024-10-30T17:30:35Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3D Gaussian splatting (3DGS) has shown promising results in rendering image and surface reconstruction.
This paper introduces R2$-Gaussian, the first 3DGS-based framework for sparse-view tomographic reconstruction.
arXiv Detail & Related papers (2024-05-31T08:39:02Z) - R2D2 image reconstruction with model uncertainty quantification in radio astronomy [1.7249361224827533]
The Residual-to-Residual'' (R2D2) approach was recently introduced for Radio-Interferometric (RI) imaging in astronomy.
R2D2's reconstruction is formed as a series of residual images, iteratively estimated as outputs of Deep Neural Networks (DNNs)
We study the robustness of the R2D2 image estimation process, by studying the uncertainty associated with its series of learned models.
arXiv Detail & Related papers (2024-03-26T19:10:08Z) - Scalable Non-Cartesian Magnetic Resonance Imaging with R2D2 [6.728969294264806]
We propose a new approach for non-esian magnetic resonance image reconstruction.
We leverage the "Residual to-Residual DNN series for high range imaging (R2D2)"
arXiv Detail & Related papers (2024-03-26T17:45:06Z) - The R2D2 deep neural network series paradigm for fast precision imaging in radio astronomy [1.7249361224827533]
Recent image reconstruction techniques have remarkable capability for imaging precision, well beyond CLEAN's capability.
We introduce a novel deep learning approach, dubbed "Residual-to-Residual DNN series for high-Dynamic range imaging"
R2D2's capability to deliver high precision is demonstrated in simulation, across a variety image observation settings using the Very Large Array (VLA)
arXiv Detail & Related papers (2024-03-08T16:57:54Z) - Passive superresolution imaging of incoherent objects [63.942632088208505]
Method consists of measuring the field's spatial mode components in the image plane in the overcomplete basis of Hermite-Gaussian modes and their superpositions.
Deep neural network is used to reconstruct the object from these measurements.
arXiv Detail & Related papers (2023-04-19T15:53:09Z) - Neural Implicit Dictionary via Mixture-of-Expert Training [111.08941206369508]
We present a generic INR framework that achieves both data and training efficiency by learning a Neural Implicit Dictionary (NID)
Our NID assembles a group of coordinate-based Impworks which are tuned to span the desired function space.
Our experiments show that, NID can improve reconstruction of 2D images or 3D scenes by 2 orders of magnitude faster with up to 98% less input data.
arXiv Detail & Related papers (2022-07-08T05:07:19Z) - Image reconstruction algorithms in radio interferometry: from
handcrafted to learned denoisers [7.1439425093981574]
We introduce a new class of iterative image reconstruction algorithms for radio interferometry, inspired by plug-and-play methods.
The approach consists in learning a prior image model by training a deep neural network (DNN) as a denoiser.
We plug the learned denoiser into the forward-backward optimization algorithm, resulting in a simple iterative structure alternating a denoising step with a gradient-descent data-fidelity step.
arXiv Detail & Related papers (2022-02-25T20:26:33Z) - Dual-view Snapshot Compressive Imaging via Optical Flow Aided Recurrent
Neural Network [14.796204921975733]
Dual-view snapshot compressive imaging (SCI) aims to capture videos from two field-of-views (FoVs) in a single snapshot.
It is challenging for existing model-based decoding algorithms to reconstruct each individual scene.
We propose an optical flow-aided recurrent neural network for dual video SCI systems, which provides high-quality decoding in seconds.
arXiv Detail & Related papers (2021-09-11T14:24:44Z) - Unsupervised Single Image Super-resolution Under Complex Noise [60.566471567837574]
This paper proposes a model-based unsupervised SISR method to deal with the general SISR task with unknown degradations.
The proposed method can evidently surpass the current state of the art (SotA) method (about 1dB PSNR) not only with a slighter model (0.34M vs. 2.40M) but also faster speed.
arXiv Detail & Related papers (2021-07-02T11:55:40Z) - UltraSR: Spatial Encoding is a Missing Key for Implicit Image
Function-based Arbitrary-Scale Super-Resolution [74.82282301089994]
In this work, we propose UltraSR, a simple yet effective new network design based on implicit image functions.
We show that spatial encoding is indeed a missing key towards the next-stage high-accuracy implicit image function.
Our UltraSR sets new state-of-the-art performance on the DIV2K benchmark under all super-resolution scales.
arXiv Detail & Related papers (2021-03-23T17:36:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.