FCaS: Fine-grained Cardiac Image Synthesis based on 3D Template Conditional Diffusion Model
- URL: http://arxiv.org/abs/2503.09560v1
- Date: Wed, 12 Mar 2025 17:25:09 GMT
- Title: FCaS: Fine-grained Cardiac Image Synthesis based on 3D Template Conditional Diffusion Model
- Authors: Jiahao Xia, Yutao Hu, Yaolei Qi, Zhenliang Li, Wenqi Shao, Junjun He, Ying Fu, Longjiang Zhang, Guanyu Yang,
- Abstract summary: We propose the Fine-grained Cardiac image Synthesis framework, established on 3D template conditional diffusion model.<n>FCaS achieves precise cardiac structure generation using template-guided Conditional Diffusion Model (TCDM)<n>To alleviate the confusion caused by imprecise synthetic images, we propose a Confidence-aware Adaptive Learning (CAL) strategy.
- Score: 23.9686884119236
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Solving medical imaging data scarcity through semantic image generation has attracted significant attention in recent years. However, existing methods primarily focus on generating whole-organ or large-tissue structures, showing limited effectiveness for organs with fine-grained structure. Due to stringent topological consistency, fragile coronary features, and complex 3D morphological heterogeneity in cardiac imaging, accurately reconstructing fine-grained anatomical details of the heart remains a great challenge. To address this problem, in this paper, we propose the Fine-grained Cardiac image Synthesis(FCaS) framework, established on 3D template conditional diffusion model. FCaS achieves precise cardiac structure generation using Template-guided Conditional Diffusion Model (TCDM) through bidirectional mechanisms, which provides the fine-grained topological structure information of target image through the guidance of template. Meanwhile, we design a deformable Mask Generation Module (MGM) to mitigate the scarcity of high-quality and diverse reference mask in the generation process. Furthermore, to alleviate the confusion caused by imprecise synthetic images, we propose a Confidence-aware Adaptive Learning (CAL) strategy to facilitate the pre-training of downstream segmentation tasks. Specifically, we introduce the Skip-Sampling Variance (SSV) estimation to obtain confidence maps, which are subsequently employed to rectify the pre-training on downstream tasks. Experimental results demonstrate that images generated from FCaS achieves state-of-the-art performance in topological consistency and visual quality, which significantly facilitates the downstream tasks as well. Code will be released in the future.
Related papers
- Causal Disentanglement for Robust Long-tail Medical Image Generation [80.15257897500578]
We propose a novel medical image generation framework, which generates independent pathological and structural features.
We leverage a diffusion model guided by pathological findings to model pathological features, enabling the generation of diverse counterfactual images.
arXiv Detail & Related papers (2025-04-20T01:54:18Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.
We evaluate our method on three public longitudinal benchmark datasets of brain MRI and chest X-rays for counterfactual image generation.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Image Synthesis with Class-Aware Semantic Diffusion Models for Surgical Scene Segmentation [3.6723640056915436]
We propose the Class-Aware Semantic Diffusion Model (CASDM) to tackle data scarcity and imbalance.
Class-aware mean squared error and class-aware self-perceptual loss functions have been defined to prioritize critical, less visible classes.
We are the first to generate multi-class segmentation maps using text prompts in a novel fashion to specify their contents.
arXiv Detail & Related papers (2024-10-31T14:14:30Z) - Explicit Differentiable Slicing and Global Deformation for Cardiac Mesh Reconstruction [8.730291904586656]
Mesh reconstruction of the cardiac anatomy from medical images is useful for shape and motion measurements and biophysics simulations.
Traditional voxel-based approaches rely on pre- and post-processing that compromises image fidelity.
We propose a novel explicit differentiable voxelization and slicing (DVS) algorithm that allows gradient backpropagation to a mesh from its slices.
arXiv Detail & Related papers (2024-09-03T17:19:31Z) - Timestep-Aware Diffusion Model for Extreme Image Rescaling [47.89362819768323]
We propose a novel framework called Timestep-Aware Diffusion Model (TADM) for extreme image rescaling.<n>TADM performs rescaling operations in the latent space of a pre-trained autoencoder.<n>It effectively leverages powerful natural image priors learned by a pre-trained text-to-image diffusion model.
arXiv Detail & Related papers (2024-08-17T09:51:42Z) - Coarse-to-Fine Latent Diffusion for Pose-Guided Person Image Synthesis [65.7968515029306]
We propose a novel Coarse-to-Fine Latent Diffusion (CFLD) method for Pose-Guided Person Image Synthesis (PGPIS)
A perception-refined decoder is designed to progressively refine a set of learnable queries and extract semantic understanding of person images as a coarse-grained prompt.
arXiv Detail & Related papers (2024-02-28T06:07:07Z) - MedSyn: Text-guided Anatomy-aware Synthesis of High-Fidelity 3D CT Images [22.455833806331384]
This paper introduces an innovative methodology for producing high-quality 3D lung CT images guided by textual information.
Current state-of-the-art approaches are limited to low-resolution outputs and underutilize radiology reports' abundant information.
arXiv Detail & Related papers (2023-10-05T14:16:22Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - Pathology Synthesis of 3D-Consistent Cardiac MR Images using 2D VAEs and
GANs [0.5039813366558306]
We propose a method for generating labeled data for the application of supervised deep-learning (DL) training.
The image synthesis consists of label deformation and label-to-image translation tasks.
We demonstrate that such an approach could provide a solution to diversify and enrich an available database of cardiac MR images.
arXiv Detail & Related papers (2022-09-09T10:17:49Z) - Semantic Image Synthesis via Diffusion Models [159.4285444680301]
Denoising Diffusion Probabilistic Models (DDPMs) have achieved remarkable success in various image generation tasks.
Recent work on semantic image synthesis mainly follows the emphde facto Generative Adversarial Nets (GANs)
arXiv Detail & Related papers (2022-06-30T18:31:51Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
We introduce the challenging new task of explainable multiple abnormality classification in volumetric medical images.
We propose a multiple instance learning convolutional neural network, AxialNet, that allows identification of top slices for each abnormality.
We then aim to improve the model's learning through a novel mask loss that leverages HiResCAM and 3D allowed regions.
arXiv Detail & Related papers (2021-11-24T01:14:33Z) - Synthetic Generation of Three-Dimensional Cancer Cell Models from
Histopathological Images [19.778965983551114]
We propose a novel framework to generate synthetic three-dimensional histological models based on a generator-discriminator pattern.
The proposed algorithms achieves high quantitative and qualitative synthesis evident in comparative evaluation metrics such as a low Frechet-Inception scores.
arXiv Detail & Related papers (2021-01-26T14:00:00Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
We propose a novel end-to-end GAN architecture that can generate high-resolution 3D images.
We achieve this goal by using different configurations between training and inference.
Experiments on 3D thorax CT and brain MRI demonstrate that our approach outperforms state of the art in image generation.
arXiv Detail & Related papers (2020-08-05T02:33:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.