Fair Federated Medical Image Classification Against Quality Shift via Inter-Client Progressive State Matching
- URL: http://arxiv.org/abs/2503.09587v1
- Date: Wed, 12 Mar 2025 17:56:28 GMT
- Title: Fair Federated Medical Image Classification Against Quality Shift via Inter-Client Progressive State Matching
- Authors: Nannan Wu, Zhuo Kuang, Zengqiang Yan, Ping Wang, Li Yu,
- Abstract summary: In this work, we argue that fairness based on a single state is still not an adequate surrogate for fairness during testing.<n>We propose assessing convergence using multiple states, defined as sharpness or perturbed loss computed at varying search distances.<n>We then incorporate two components in local training and global aggregation to ensure cross-client fairness for each state.
- Score: 12.832015042020844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the potential of federated learning in medical applications, inconsistent imaging quality across institutions-stemming from lower-quality data from a minority of clients-biases federated models toward more common high-quality images. This raises significant fairness concerns. Existing fair federated learning methods have demonstrated some effectiveness in solving this problem by aligning a single 0th- or 1st-order state of convergence (e.g., training loss or sharpness). However, we argue in this work that fairness based on such a single state is still not an adequate surrogate for fairness during testing, as these single metrics fail to fully capture the convergence characteristics, making them suboptimal for guiding fair learning. To address this limitation, we develop a generalized framework. Specifically, we propose assessing convergence using multiple states, defined as sharpness or perturbed loss computed at varying search distances. Building on this comprehensive assessment, we propose promoting fairness for these states across clients to achieve our ultimate fairness objective. This is accomplished through the proposed method, FedISM+. In FedISM+, the search distance evolves over time, progressively focusing on different states. We then incorporate two components in local training and global aggregation to ensure cross-client fairness for each state. This gradually makes convergence equitable for all states, thereby improving fairness during testing. Our empirical evaluations, performed on the well-known RSNA ICH and ISIC 2019 datasets, demonstrate the superiority of FedISM+ over existing state-of-the-art methods for fair federated learning. The code is available at https://github.com/wnn2000/FFL4MIA.
Related papers
- Federated Fairness Analytics: Quantifying Fairness in Federated Learning [2.9674793945631097]
Federated Learning (FL) is a privacy-enhancing technology for distributed ML.
FL inherits fairness challenges from classical ML and introduces new ones.
We propose Federated Fairness Analytics - a methodology for measuring fairness.
arXiv Detail & Related papers (2024-08-15T15:23:32Z) - From Optimization to Generalization: Fair Federated Learning against Quality Shift via Inter-Client Sharpness Matching [10.736121438623003]
Federated learning has been recognized as a vital approach for training deep neural networks with decentralized medical data.<n>In practice, it is challenging to ensure consistent imaging quality across various institutions.<n>This imbalance in image quality can cause the federated model to develop an inherent bias towards higher-quality images.
arXiv Detail & Related papers (2024-04-27T07:05:41Z) - Equal Opportunity of Coverage in Fair Regression [50.76908018786335]
We study fair machine learning (ML) under predictive uncertainty to enable reliable and trustworthy decision-making.
We propose Equal Opportunity of Coverage (EOC) that aims to achieve two properties: (1) coverage rates for different groups with similar outcomes are close, and (2) the coverage rate for the entire population remains at a predetermined level.
arXiv Detail & Related papers (2023-11-03T21:19:59Z) - Fairness-enhancing mixed effects deep learning improves fairness on in- and out-of-distribution clustered (non-iid) data [6.596656267996196]
We propose the Fair Mixed Effects Deep Learning (Fair MEDL) framework.<n>This framework quantifies cluster-invariant fixed effects (FE) and cluster-specific random effects (RE) through: 1) a cluster adversary for learning invariant FE, 2) a Bayesian neural network for RE, and 3) a mixing function combining FE and RE for final predictions.<n>Fair MEDL framework improves fairness by 86.4% for Age, 64.9% for Race, 57.8% for Sex, and 36.2% for Marital status, while maintaining robust predictive performance.
arXiv Detail & Related papers (2023-10-04T20:18:45Z) - FedVal: Different good or different bad in federated learning [9.558549875692808]
Federated learning (FL) systems are susceptible to attacks from malicious actors.
FL poses new challenges in addressing group bias, such as ensuring fair performance for different demographic groups.
Traditional methods used to address such biases require centralized access to the data, which FL systems do not have.
We present a novel approach FedVal for both robustness and fairness that does not require any additional information from clients.
arXiv Detail & Related papers (2023-06-06T22:11:13Z) - Fairness meets Cross-Domain Learning: a new perspective on Models and
Metrics [80.07271410743806]
We study the relationship between cross-domain learning (CD) and model fairness.
We introduce a benchmark on face and medical images spanning several demographic groups as well as classification and localization tasks.
Our study covers 14 CD approaches alongside three state-of-the-art fairness algorithms and shows how the former can outperform the latter.
arXiv Detail & Related papers (2023-03-25T09:34:05Z) - How Robust is Your Fairness? Evaluating and Sustaining Fairness under
Unseen Distribution Shifts [107.72786199113183]
We propose a novel fairness learning method termed CUrvature MAtching (CUMA)
CUMA achieves robust fairness generalizable to unseen domains with unknown distributional shifts.
We evaluate our method on three popular fairness datasets.
arXiv Detail & Related papers (2022-07-04T02:37:50Z) - FedMed-GAN: Federated Domain Translation on Unsupervised Cross-Modality
Brain Image Synthesis [55.939957482776194]
We propose a new benchmark for federated domain translation on unsupervised brain image synthesis (termed as FedMed-GAN)
FedMed-GAN mitigates the mode collapse without sacrificing the performance of generators.
A comprehensive evaluation is provided for comparing FedMed-GAN and other centralized methods.
arXiv Detail & Related papers (2022-01-22T02:50:29Z) - Fairness-aware Agnostic Federated Learning [47.26747955026486]
We develop a fairness-aware agnostic federated learning framework (AgnosticFair) to deal with the challenge of unknown testing distribution.
We use kernel reweighing functions to assign a reweighing value on each training sample in both loss function and fairness constraint.
Built model can be directly applied to local sites as it guarantees fairness on local data distributions.
arXiv Detail & Related papers (2020-10-10T17:58:20Z) - Deep F-measure Maximization for End-to-End Speech Understanding [52.36496114728355]
We propose a differentiable approximation to the F-measure and train the network with this objective using standard backpropagation.
We perform experiments on two standard fairness datasets, Adult, Communities and Crime, and also on speech-to-intent detection on the ATIS dataset and speech-to-image concept classification on the Speech-COCO dataset.
In all four of these tasks, F-measure results in improved micro-F1 scores, with absolute improvements of up to 8% absolute, as compared to models trained with the cross-entropy loss function.
arXiv Detail & Related papers (2020-08-08T03:02:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.