The Pitfalls of Imitation Learning when Actions are Continuous
- URL: http://arxiv.org/abs/2503.09722v3
- Date: Tue, 15 Apr 2025 16:25:03 GMT
- Title: The Pitfalls of Imitation Learning when Actions are Continuous
- Authors: Max Simchowitz, Daniel Pfrommer, Ali Jadbabaie,
- Abstract summary: We study the problem of imitating an expert demonstrator in a continuous state-and-action control system.<n>We show that, even if the dynamics satisfy a control-theoretic property called exponentially stability, any smooth, deterministic imitator policy necessarily suffers error.
- Score: 33.44344966171865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of imitating an expert demonstrator in a discrete-time, continuous state-and-action control system. We show that, even if the dynamics satisfy a control-theoretic property called exponentially stability (i.e. the effects of perturbations decay exponentially quickly), and the expert is smooth and deterministic, any smooth, deterministic imitator policy necessarily suffers error on execution that is exponentially larger, as a function of problem horizon, than the error under the distribution of expert training data. Our negative result applies to any algorithm which learns solely from expert data, including both behavior cloning and offline-RL algorithms, unless the algorithm produces highly "improper" imitator policies--those which are non-smooth, non-Markovian, or which exhibit highly state-dependent stochasticity--or unless the expert trajectory distribution is sufficiently "spread." We provide experimental evidence of the benefits of these more complex policy parameterizations, explicating the benefits of today's popular policy parameterizations in robot learning (e.g. action-chunking and Diffusion Policies). We also establish a host of complementary negative and positive results for imitation in control systems.
Related papers
- Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - SAFE-GIL: SAFEty Guided Imitation Learning for Robotic Systems [15.782203322922017]
We propose SAFE-GIL, a design-time method to learn safety-aware behavior cloning policies.
We inject adversarial disturbance in the system during data collection to guide the expert towards safety-critical states.
This disturbance injection simulates potential policy errors that the system might encounter during the test time.
arXiv Detail & Related papers (2024-04-08T07:25:25Z) - Pessimistic Causal Reinforcement Learning with Mediators for Confounded Offline Data [17.991833729722288]
We propose a novel policy learning algorithm, PESsimistic CAusal Learning (PESCAL)
Our key observation is that, by incorporating auxiliary variables that mediate the effect of actions on system dynamics, it is sufficient to learn a lower bound of the mediator distribution function, instead of the Q-function.
We provide theoretical guarantees for the algorithms we propose, and demonstrate their efficacy through simulations, as well as real-world experiments utilizing offline datasets from a leading ride-hailing platform.
arXiv Detail & Related papers (2024-03-18T14:51:19Z) - Actively Learning Reinforcement Learning: A Stochastic Optimal Control Approach [3.453622106101339]
We propose a framework towards achieving two intertwined objectives: (i) equipping reinforcement learning with active exploration and deliberate information gathering, and (ii) overcoming the computational intractability of optimal control law.
We approach both objectives by using reinforcement learning to compute the optimal control law.
Unlike fixed exploration and exploitation balance, caution and probing are employed automatically by the controller in real-time, even after the learning process is terminated.
arXiv Detail & Related papers (2023-09-18T18:05:35Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
We propose a theoretical framework for studying behavior cloning of complex expert demonstrations using generative modeling.
We show that pure supervised cloning can generate trajectories matching the per-time step distribution of arbitrary expert trajectories.
arXiv Detail & Related papers (2023-07-27T04:27:26Z) - Optimal scheduling of entropy regulariser for continuous-time
linear-quadratic reinforcement learning [9.779769486156631]
Herein agent interacts with the environment by generating noisy controls distributed according to the optimal relaxed policy.
This exploration-exploitation trade-off is determined by the strength of entropy regularisation.
We prove that the regret, for both learning algorithms, is of the order $mathcalO(sqrtN) $ (up to a logarithmic factor) over $N$ episodes, matching the best known result from the literature.
arXiv Detail & Related papers (2022-08-08T23:36:40Z) - False Correlation Reduction for Offline Reinforcement Learning [115.11954432080749]
We propose falSe COrrelation REduction (SCORE) for offline RL, a practically effective and theoretically provable algorithm.
We empirically show that SCORE achieves the SoTA performance with 3.1x acceleration on various tasks in a standard benchmark (D4RL)
arXiv Detail & Related papers (2021-10-24T15:34:03Z) - Reinforcement Learning Policies in Continuous-Time Linear Systems [0.0]
We present online policies that learn optimal actions fast by carefully randomizing the parameter estimates.
We prove sharp stability results for inexact system dynamics and tightly specify the infinitesimal regret caused by sub-optimal actions.
Our analysis sheds light on fundamental challenges in continuous-time reinforcement learning and suggests a useful cornerstone for similar problems.
arXiv Detail & Related papers (2021-09-16T00:08:50Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Closing the Closed-Loop Distribution Shift in Safe Imitation Learning [80.05727171757454]
We treat safe optimization-based control strategies as experts in an imitation learning problem.
We train a learned policy that can be cheaply evaluated at run-time and that provably satisfies the same safety guarantees as the expert.
arXiv Detail & Related papers (2021-02-18T05:11:41Z) - Strictly Batch Imitation Learning by Energy-based Distribution Matching [104.33286163090179]
Consider learning a policy purely on the basis of demonstrated behavior -- that is, with no access to reinforcement signals, no knowledge of transition dynamics, and no further interaction with the environment.
One solution is simply to retrofit existing algorithms for apprenticeship learning to work in the offline setting.
But such an approach leans heavily on off-policy evaluation or offline model estimation, and can be indirect and inefficient.
We argue that a good solution should be able to explicitly parameterize a policy, implicitly learn from rollout dynamics, and operate in an entirely offline fashion.
arXiv Detail & Related papers (2020-06-25T03:27:59Z) - DisCor: Corrective Feedback in Reinforcement Learning via Distribution
Correction [96.90215318875859]
We show that bootstrapping-based Q-learning algorithms do not necessarily benefit from corrective feedback.
We propose a new algorithm, DisCor, which computes an approximation to this optimal distribution and uses it to re-weight the transitions used for training.
arXiv Detail & Related papers (2020-03-16T16:18:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.