Actively Learning Reinforcement Learning: A Stochastic Optimal Control Approach
- URL: http://arxiv.org/abs/2309.10831v4
- Date: Sun, 8 Sep 2024 22:01:53 GMT
- Title: Actively Learning Reinforcement Learning: A Stochastic Optimal Control Approach
- Authors: Mohammad S. Ramadan, Mahmoud A. Hayajnh, Michael T. Tolley, Kyriakos G. Vamvoudakis,
- Abstract summary: We propose a framework towards achieving two intertwined objectives: (i) equipping reinforcement learning with active exploration and deliberate information gathering, and (ii) overcoming the computational intractability of optimal control law.
We approach both objectives by using reinforcement learning to compute the optimal control law.
Unlike fixed exploration and exploitation balance, caution and probing are employed automatically by the controller in real-time, even after the learning process is terminated.
- Score: 3.453622106101339
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we propose a framework towards achieving two intertwined objectives: (i) equipping reinforcement learning with active exploration and deliberate information gathering, such that it regulates state and parameter uncertainties resulting from modeling mismatches and noisy sensory; and (ii) overcoming the computational intractability of stochastic optimal control. We approach both objectives by using reinforcement learning to compute the stochastic optimal control law. On one hand, we avoid the curse of dimensionality prohibiting the direct solution of the stochastic dynamic programming equation. On the other hand, the resulting stochastic optimal control reinforcement learning agent admits caution and probing, that is, optimal online exploration and exploitation. Unlike fixed exploration and exploitation balance, caution and probing are employed automatically by the controller in real-time, even after the learning process is terminated. We conclude the paper with a numerical simulation, illustrating how a Linear Quadratic Regulator with the certainty equivalence assumption may lead to poor performance and filter divergence, while our proposed approach is stabilizing, of an acceptable performance, and computationally convenient.
Related papers
- Sublinear Regret for a Class of Continuous-Time Linear--Quadratic Reinforcement Learning Problems [10.404992912881601]
We study reinforcement learning for a class of continuous-time linear-quadratic (LQ) control problems for diffusions.
We apply a model-free approach that relies neither on knowledge of model parameters nor on their estimations, and devise an actor-critic algorithm to learn the optimal policy parameter directly.
arXiv Detail & Related papers (2024-07-24T12:26:21Z) - Stable Inverse Reinforcement Learning: Policies from Control Lyapunov Landscapes [4.229902091180109]
We propose a novel, stability-certified IRL approach to learning control Lyapunov functions from demonstrations data.
By exploiting closed-form expressions for associated control policies, we are able to efficiently search the space of CLFs.
We present a theoretical analysis of the optimality properties provided by the CLF and evaluate our approach using both simulated and real-world data.
arXiv Detail & Related papers (2024-05-14T16:40:45Z) - Risk-Sensitive Stochastic Optimal Control as Rao-Blackwellized Markovian
Score Climbing [3.9410617513331863]
optimal control of dynamical systems is a crucial challenge in sequential decision-making.
Control-as-inference approaches have had considerable success, providing a viable risk-sensitive framework to address the exploration-exploitation dilemma.
This paper introduces a novel perspective by framing risk-sensitive control as Markovian reinforcement score climbing under samples drawn from a conditional particle filter.
arXiv Detail & Related papers (2023-12-21T16:34:03Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
We propose a theoretical framework for studying behavior cloning of complex expert demonstrations using generative modeling.
We show that pure supervised cloning can generate trajectories matching the per-time step distribution of arbitrary expert trajectories.
arXiv Detail & Related papers (2023-07-27T04:27:26Z) - Adaptive Robust Model Predictive Control via Uncertainty Cancellation [25.736296938185074]
We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics.
We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws.
arXiv Detail & Related papers (2022-12-02T18:54:23Z) - Robust Value Iteration for Continuous Control Tasks [99.00362538261972]
When transferring a control policy from simulation to a physical system, the policy needs to be robust to variations in the dynamics to perform well.
We present Robust Fitted Value Iteration, which uses dynamic programming to compute the optimal value function on the compact state domain.
We show that robust value is more robust compared to deep reinforcement learning algorithm and the non-robust version of the algorithm.
arXiv Detail & Related papers (2021-05-25T19:48:35Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Closing the Closed-Loop Distribution Shift in Safe Imitation Learning [80.05727171757454]
We treat safe optimization-based control strategies as experts in an imitation learning problem.
We train a learned policy that can be cheaply evaluated at run-time and that provably satisfies the same safety guarantees as the expert.
arXiv Detail & Related papers (2021-02-18T05:11:41Z) - Improper Learning with Gradient-based Policy Optimization [62.50997487685586]
We consider an improper reinforcement learning setting where the learner is given M base controllers for an unknown Markov Decision Process.
We propose a gradient-based approach that operates over a class of improper mixtures of the controllers.
arXiv Detail & Related papers (2021-02-16T14:53:55Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
Learning-based control algorithms require data collection with abundant supervision for training.
We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained optimal control with dynamics learning and feedback control.
arXiv Detail & Related papers (2020-05-09T05:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.