Cover Learning for Large-Scale Topology Representation
- URL: http://arxiv.org/abs/2503.09767v1
- Date: Wed, 12 Mar 2025 19:10:20 GMT
- Title: Cover Learning for Large-Scale Topology Representation
- Authors: Luis Scoccola, Uzu Lim, Heather A. Harrington,
- Abstract summary: We describe a method for learning topologically-faithful covers of geometric datasets.<n>We show that the simplicial complexes thus obtained can outperform standard topological inference approaches in terms of size.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classical unsupervised learning methods like clustering and linear dimensionality reduction parametrize large-scale geometry when it is discrete or linear, while more modern methods from manifold learning find low dimensional representation or infer local geometry by constructing a graph on the input data. More recently, topological data analysis popularized the use of simplicial complexes to represent data topology with two main methodologies: topological inference with geometric complexes and large-scale topology visualization with Mapper graphs -- central to these is the nerve construction from topology, which builds a simplicial complex given a cover of a space by subsets. While successful, these have limitations: geometric complexes scale poorly with data size, and Mapper graphs can be hard to tune and only contain low dimensional information. In this paper, we propose to study the problem of learning covers in its own right, and from the perspective of optimization. We describe a method for learning topologically-faithful covers of geometric datasets, and show that the simplicial complexes thus obtained can outperform standard topological inference approaches in terms of size, and Mapper-type algorithms in terms of representation of large-scale topology.
Related papers
- Flexible Mesh Segmentation via Reeb Graph Representation of Geometrical and Topological Features [0.0]
This paper presents a new mesh segmentation method that integrates geometrical and topological features through a flexible Reeb graph representation.
The algorithm consists of three phases: construction of the Reeb graph using the improved topological skeleton approach, topological simplification of the graph by cancelling critical points while preserving essential features, and generation of contiguous segments via an adaptive region-growth process.
arXiv Detail & Related papers (2024-12-05T23:04:45Z) - Disentangled Representation Learning with the Gromov-Monge Gap [65.73194652234848]
Learning disentangled representations from unlabelled data is a fundamental challenge in machine learning.
We introduce a novel approach to disentangled representation learning based on quadratic optimal transport.
We demonstrate the effectiveness of our approach for quantifying disentanglement across four standard benchmarks.
arXiv Detail & Related papers (2024-07-10T16:51:32Z) - A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications [71.809127869349]
This paper formalizes geometric graph as the data structure, on top of which we provide a unified view of existing models from the geometric message passing perspective.<n>We also summarize the applications as well as the related datasets to facilitate later research for methodology development and experimental evaluation.
arXiv Detail & Related papers (2024-03-01T12:13:04Z) - Simplicial Representation Learning with Neural $k$-Forms [14.566552361705499]
This paper focuses on leveraging geometric information from simplicial complexes embedded in $mathbbRn$ using node coordinates.
We use differential k-forms in mathbbRn to create representations of simplices, offering interpretability and geometric consistency without message passing.
Our method is efficient, versatile, and applicable to various input complexes, including graphs, simplicial complexes, and cell complexes.
arXiv Detail & Related papers (2023-12-13T21:03:39Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
The reliability of graph embeddings depends on how much the geometry of the continuous space matches the graph structure.
We introduce a new class of manifold, named soft manifold, that can solve this situation.
Using soft manifold for graph embedding, we can provide continuous spaces to pursue any task in data analysis over complex datasets.
arXiv Detail & Related papers (2023-11-29T12:48:33Z) - Topologically Regularized Data Embeddings [15.001598256750619]
We introduce a generic approach based on algebraic topology to incorporate topological prior knowledge into low-dimensional embeddings.
We show that jointly optimizing an embedding loss with such a topological loss function as a regularizer yields embeddings that reflect not only local proximities but also the desired topological structure.
We empirically evaluate the proposed approach on computational efficiency, robustness, and versatility in combination with linear and non-linear dimensionality reduction and graph embedding methods.
arXiv Detail & Related papers (2023-01-09T13:49:47Z) - Towards a mathematical understanding of learning from few examples with
nonlinear feature maps [68.8204255655161]
We consider the problem of data classification where the training set consists of just a few data points.
We reveal key relationships between the geometry of an AI model's feature space, the structure of the underlying data distributions, and the model's generalisation capabilities.
arXiv Detail & Related papers (2022-11-07T14:52:58Z) - Semi-Supervised Manifold Learning with Complexity Decoupled Chart Autoencoders [45.29194877564103]
This work introduces a chart autoencoder with an asymmetric encoding-decoding process that can incorporate additional semi-supervised information such as class labels.
We discuss the approximation power of such networks and derive a bound that essentially depends on the intrinsic dimension of the data manifold rather than the dimension of ambient space.
arXiv Detail & Related papers (2022-08-22T19:58:03Z) - Geometry Contrastive Learning on Heterogeneous Graphs [50.58523799455101]
This paper proposes a novel self-supervised learning method, termed as Geometry Contrastive Learning (GCL)
GCL views a heterogeneous graph from Euclidean and hyperbolic perspective simultaneously, aiming to make a strong merger of the ability of modeling rich semantics and complex structures.
Extensive experiments on four benchmarks data sets show that the proposed approach outperforms the strong baselines.
arXiv Detail & Related papers (2022-06-25T03:54:53Z) - Fiberwise dimensionality reduction of topologically complex data with
vector bundles [0.0]
We propose to model topologically complex datasets using vector bundles.
The base space accounts for the large scale topology, while the fibers account for the local geometry.
This allows one to reduce the dimensionality of the fibers, while preserving the large scale topology.
arXiv Detail & Related papers (2022-06-13T22:53:46Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
Simplicial complexes can be viewed as high dimensional generalizations of graphs that explicitly encode multi-way ordered relations.
We propose a graph convolutional model for learning functions parametrized by the $k$-homological features of simplicial complexes.
arXiv Detail & Related papers (2021-10-28T14:59:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.