Batch List-Decodable Linear Regression via Higher Moments
- URL: http://arxiv.org/abs/2503.09802v1
- Date: Wed, 12 Mar 2025 20:11:07 GMT
- Title: Batch List-Decodable Linear Regression via Higher Moments
- Authors: Ilias Diakonikolas, Daniel M. Kane, Sushrut Karmalkar, Sihan Liu, Thanasis Pittas,
- Abstract summary: We study the task of list-decodable linear regression using batches.<n>A batch is called clean if it consists of i.i.d. samples from an unknown linear regression distribution.
- Score: 39.32851434877865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the task of list-decodable linear regression using batches. A batch is called clean if it consists of i.i.d. samples from an unknown linear regression distribution. For a parameter $\alpha \in (0, 1/2)$, an unknown $\alpha$-fraction of the batches are clean and no assumptions are made on the remaining ones. The goal is to output a small list of vectors at least one of which is close to the true regressor vector in $\ell_2$-norm. [DJKS23] gave an efficient algorithm, under natural distributional assumptions, with the following guarantee. Assuming that the batch size $n$ satisfies $n \geq \tilde{\Omega}(\alpha^{-1})$ and the number of batches is $m = \mathrm{poly}(d, n, 1/\alpha)$, their algorithm runs in polynomial time and outputs a list of $O(1/\alpha^2)$ vectors at least one of which is $\tilde{O}(\alpha^{-1/2}/\sqrt{n})$ close to the target regressor. Here we design a new polynomial time algorithm with significantly stronger guarantees under the assumption that the low-degree moments of the covariates distribution are Sum-of-Squares (SoS) certifiably bounded. Specifically, for any constant $\delta>0$, as long as the batch size is $n \geq \Omega_{\delta}(\alpha^{-\delta})$ and the degree-$\Theta(1/\delta)$ moments of the covariates are SoS certifiably bounded, our algorithm uses $m = \mathrm{poly}((dn)^{1/\delta}, 1/\alpha)$ batches, runs in polynomial-time, and outputs an $O(1/\alpha)$-sized list of vectors one of which is $O(\alpha^{-\delta/2}/\sqrt{n})$ close to the target. That is, our algorithm achieves substantially smaller minimum batch size and final error, while achieving the optimal list size. Our approach uses higher-order moment information by carefully combining the SoS paradigm interleaved with an iterative method and a novel list pruning procedure. In the process, we give an SoS proof of the Marcinkiewicz-Zygmund inequality that may be of broader applicability.
Related papers
- Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - Efficient List-Decodable Regression using Batches [33.300073775123835]
We begin the study of list-decodable linear regression using batches.
In this setting only an $alpha in (0,1]$ fraction of the batches are genuine.
Each genuine batch contains $ge n$ i.i.d samples from a common unknown distribution and the remaining batches may contain arbitrary or even adversarial samples.
arXiv Detail & Related papers (2022-11-23T07:08:00Z) - A spectral least-squares-type method for heavy-tailed corrupted
regression with unknown covariance \& heterogeneous noise [2.019622939313173]
We revisit heavy-tailed corrupted least-squares linear regression assuming to have a corrupted $n$-sized label-feature sample of at most $epsilon n$ arbitrary outliers.
We propose a near-optimal computationally tractable estimator, based on the power method, assuming no knowledge on $(Sigma,Xi) nor the operator norm of $Xi$.
arXiv Detail & Related papers (2022-09-06T23:37:31Z) - List-Decodable Covariance Estimation [1.9290392443571387]
We give the first time algorithm for emphlist-decodable covariance estimation.
Our result implies the first-time emphexact algorithm for list-decodable linear regression and subspace recovery.
arXiv Detail & Related papers (2022-06-22T09:38:06Z) - List-Decodable Sparse Mean Estimation via Difference-of-Pairs Filtering [42.526664955704746]
We develop a novel, conceptually simpler technique for list-decodable sparse mean estimation.
In particular, for distributions with "certifiably bounded" $t-th moments in $k$-sparse directions, our algorithm achieves error of $(1/alpha)O (1/t)$ with sample complexity $m = (klog(n))O(t)/alpha(mnt)$.
For the special case of Gaussian inliers, our algorithm achieves the optimal error guarantee of $Theta (sqrtlog
arXiv Detail & Related papers (2022-06-10T17:38:18Z) - Sketching Algorithms and Lower Bounds for Ridge Regression [65.0720777731368]
We give a sketching-based iterative algorithm that computes $1+varepsilon$ approximate solutions for the ridge regression problem.
We also show that this algorithm can be used to give faster algorithms for kernel ridge regression.
arXiv Detail & Related papers (2022-04-13T22:18:47Z) - Active Sampling for Linear Regression Beyond the $\ell_2$ Norm [70.49273459706546]
We study active sampling algorithms for linear regression, which aim to query only a small number of entries of a target vector.
We show that this dependence on $d$ is optimal, up to logarithmic factors.
We also provide the first total sensitivity upper bound $O(dmax1,p/2log2 n)$ for loss functions with at most degree $p$ growth.
arXiv Detail & Related papers (2021-11-09T00:20:01Z) - Statistical Query Lower Bounds for List-Decodable Linear Regression [55.06171096484622]
We study the problem of list-decodable linear regression, where an adversary can corrupt a majority of the examples.
Our main result is a Statistical Query (SQ) lower bound of $dmathrmpoly (1/alpha)$ for this problem.
arXiv Detail & Related papers (2021-06-17T17:45:21Z) - Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
Estimation [58.24280149662003]
We study the problem of list-decodable mean estimation, where an adversary can corrupt a majority of the dataset.
We develop new algorithms for list-decodable mean estimation, achieving nearly-optimal statistical guarantees.
arXiv Detail & Related papers (2021-06-16T03:34:14Z) - List-Decodable Subspace Recovery: Dimension Independent Error in
Polynomial Time [5.812499828391904]
In list-decodable subspace recovery, the input is a collection of $n$ points $alpha n$ (for some $alpha ll 1/2$) of which are drawn i.i.d. from a distribution $mathcalD$.
In this work, we improve on results on all three fronts: emphcertifiable anti-concentration error via a faster fixed-polynomial running time.
arXiv Detail & Related papers (2020-02-12T18:30:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.