An Asymmetric Independence Model for Causal Discovery on Path Spaces
- URL: http://arxiv.org/abs/2503.09859v1
- Date: Wed, 12 Mar 2025 21:43:49 GMT
- Title: An Asymmetric Independence Model for Causal Discovery on Path Spaces
- Authors: Georg Manten, Cecilia Casolo, Søren Wengel Mogensen, Niki Kilbertus,
- Abstract summary: We develop the theory linking 'E-separation' in directed mixed graphs (DMGs) with conditional independence relations among coordinate processes in differential equations (SDEs)<n>We prove a global Markov property for cyclic SDEs, which naturally extends to partially observed cyclic SDEs.<n>We characterize the class of graphs that encode the same set of independence relations, yielding a result analogous to the seminal'same skeleton and v-structures' result for directed acyclic graphs (DAGs)
- Score: 4.595663147580863
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop the theory linking 'E-separation' in directed mixed graphs (DMGs) with conditional independence relations among coordinate processes in stochastic differential equations (SDEs), where causal relationships are determined by "which variables enter the governing equation of which other variables". We prove a global Markov property for cyclic SDEs, which naturally extends to partially observed cyclic SDEs, because our asymmetric independence model is closed under marginalization. We then characterize the class of graphs that encode the same set of independence relations, yielding a result analogous to the seminal 'same skeleton and v-structures' result for directed acyclic graphs (DAGs). In the fully observed case, we show that each such equivalence class of graphs has a greatest element as a parsimonious representation and develop algorithms to identify this greatest element from data. We conjecture that a greatest element also exists under partial observations, which we verify computationally for graphs with up to four nodes.
Related papers
- Signature Kernel Conditional Independence Tests in Causal Discovery for Stochastic Processes [7.103713918313219]
We develop conditional independence (CI) constraints on coordinate processes over selected intervals.<n>We provide a sound and complete causal discovery algorithm, capable of handling both fully and partially observed data.<n>We also propose a flexible, consistent signature kernel-based CI test to infer these constraints from data.
arXiv Detail & Related papers (2024-02-28T16:58:31Z) - Nonparametric Partial Disentanglement via Mechanism Sparsity: Sparse
Actions, Interventions and Sparse Temporal Dependencies [58.179981892921056]
This work introduces a novel principle for disentanglement we call mechanism sparsity regularization.
We propose a representation learning method that induces disentanglement by simultaneously learning the latent factors.
We show that the latent factors can be recovered by regularizing the learned causal graph to be sparse.
arXiv Detail & Related papers (2024-01-10T02:38:21Z) - Causal Modeling with Stationary Diffusions [89.94899196106223]
We learn differential equations whose stationary densities model a system's behavior under interventions.
We show that they generalize to unseen interventions on their variables, often better than classical approaches.
Our inference method is based on a new theoretical result that expresses a stationarity condition on the diffusion's generator in a reproducing kernel Hilbert space.
arXiv Detail & Related papers (2023-10-26T14:01:17Z) - A non-graphical representation of conditional independence via the
neighbourhood lattice [24.187900567260577]
We show that this decomposition exists in any compositional graphoid and can be computed efficiently and consistently in high-dimensions.
We also discuss various special cases such as graphical models and projection lattices, each of which has intuitive interpretations.
arXiv Detail & Related papers (2022-06-12T19:59:09Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z) - Heterogeneous manifolds for curvature-aware graph embedding [6.3351090376024155]
Graph embeddings are used in a broad range of Graph ML applications.
The quality of such embeddings crucially depends on whether the geometry of the space matches that of the graph.
arXiv Detail & Related papers (2022-02-02T18:18:35Z) - An Interpretable Graph Generative Model with Heterophily [38.59200985962146]
We propose the first edge-independent graph generative model that is expressive enough to capture heterophily.
Our experiments demonstrate the effectiveness of our model for a variety of important application tasks.
arXiv Detail & Related papers (2021-11-04T17:34:39Z) - Partial Counterfactual Identification from Observational and
Experimental Data [83.798237968683]
We develop effective Monte Carlo algorithms to approximate the optimal bounds from an arbitrary combination of observational and experimental data.
Our algorithms are validated extensively on synthetic and real-world datasets.
arXiv Detail & Related papers (2021-10-12T02:21:30Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
Out-of-time-orderors (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalisation.
We show explicitly that the OTOC is indeed a precise tool to explore the fine details of the Eigenstate Thermalisation Hypothesis (ETH)
We provide an estimation of the finite-size scaling of $omega_textrmGOE$ for the general class of observables composed of sums of local operators in the infinite-temperature regime.
arXiv Detail & Related papers (2021-03-01T17:51:46Z) - Convergence and Stability of Graph Convolutional Networks on Large
Random Graphs [22.387735135790706]
We study properties of Graph Convolutional Networks (GCNs) by analyzing their behavior on standard models of random graphs.
We first study the convergence of GCNs to their continuous counterpart as the number of nodes grows.
We then analyze the stability of GCNs to small deformations of the random graph model.
arXiv Detail & Related papers (2020-06-02T18:36:19Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.