Identifying Trustworthiness Challenges in Deep Learning Models for Continental-Scale Water Quality Prediction
- URL: http://arxiv.org/abs/2503.09947v1
- Date: Thu, 13 Mar 2025 01:50:50 GMT
- Title: Identifying Trustworthiness Challenges in Deep Learning Models for Continental-Scale Water Quality Prediction
- Authors: Xiaobo Xia, Xiaofeng Liu, Jiale Liu, Kuai Fang, Lu Lu, Samet Oymak, William S. Currie, Tongliang Liu,
- Abstract summary: We present the first comprehensive evaluation of trustworthiness in a continental-scale multi-task LSTM model.<n>Our investigation uncovers systematic patterns of model performance disparities linked to basin characteristics.<n>This work serves as a timely call to action for advancing trustworthy data-driven methods for water resources management.
- Score: 64.4881275941927
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Water quality is foundational to environmental sustainability, ecosystem resilience, and public health. Deep learning models, particularly Long Short-Term Memory (LSTM) networks, offer transformative potential for large-scale water quality prediction and scientific insights generation. However, their widespread adoption in high-stakes decision-making, such as pollution mitigation and equitable resource allocation, is prevented by unresolved trustworthiness challenges including fairness, uncertainty, interpretability, robustness, generalizability, and reproducibility. In this work, we present the first comprehensive evaluation of trustworthiness in a continental-scale multi-task LSTM model predicting 20 water quality variables (encompassing physical/chemical processes, geochemical weathering, and nutrient cycling) across 482 U.S. basins. Our investigation uncovers systematic patterns of model performance disparities linked to basin characteristics, the inherent complexity of biogeochemical processes, and variable predictability, emphasizing critical performance fairness concerns. We further propose methodological frameworks for quantitatively evaluating critical aspects of trustworthiness, including uncertainty, interpretability, and robustness, identifying key limitations that could challenge reliable real-world deployment. This work serves as a timely call to action for advancing trustworthy data-driven methods for water resources management and provides a pathway to offering critical insights for researchers, decision-makers, and practitioners seeking to leverage artificial intelligence (AI) responsibly in environmental management.
Related papers
- REVAL: A Comprehension Evaluation on Reliability and Values of Large Vision-Language Models [59.445672459851274]
REVAL is a comprehensive benchmark designed to evaluate the textbfREliability and textbfVALue of Large Vision-Language Models.
REVAL encompasses over 144K image-text Visual Question Answering (VQA) samples, structured into two primary sections: Reliability and Values.
We evaluate 26 models, including mainstream open-source LVLMs and prominent closed-source models like GPT-4o and Gemini-1.5-Pro.
arXiv Detail & Related papers (2025-03-20T07:54:35Z) - Integrating Boosted learning with Differential Evolution (DE) Optimizer: A Prediction of Groundwater Quality Risk Assessment in Odisha [0.0]
This study developed a machine learning-based predictive model to evaluate the Groundwater Quality Index (GWQI)
It has been achieved with the help of a hybrid machine learning model i.e. LCBoost Fusion.
arXiv Detail & Related papers (2025-02-25T07:47:41Z) - Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
We present a comprehensive framework to disentangle, quantify, and mitigate uncertainty in perception and plan generation.
We propose methods tailored to the unique properties of perception and decision-making.
We show that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines.
arXiv Detail & Related papers (2024-11-03T17:32:00Z) - Water quality polluted by total suspended solids classified within an Artificial Neural Network approach [0.0]
Water pollution by suspended solids poses significant environmental and health risks.
To address these challenges, we developed a model that leverages a comprehensive dataset of water quality from total suspended solids.
A convolutional neural network was trained under a transfer learning approach using data corresponding to different total suspended solids concentrations.
arXiv Detail & Related papers (2024-10-19T01:33:08Z) - Cooperative Resilience in Artificial Intelligence Multiagent Systems [2.0608564715600273]
This paper proposes a clear definition of cooperative resilience' and a methodology for its quantitative measurement.
The results highlight the crucial role of resilience metrics in analyzing how the collective system prepares for, resists, recovers from, sustains well-being, and transforms in the face of disruptions.
arXiv Detail & Related papers (2024-09-20T03:28:48Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.<n>Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.<n>However, the deployment of these agents in physical environments presents significant safety challenges.<n>This study introduces EARBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - Machine Learning for Urban Air Quality Analytics: A Survey [27.96085346957208]
Air pollution poses an urgent global concern with far-reaching consequences.
In this article, we present a comprehensive survey of Machine Learning-based air quality analytics.
arXiv Detail & Related papers (2023-10-14T17:03:29Z) - Beyond Tides and Time: Machine Learning Triumph in Water Quality [0.0]
This study aims to establish a robust predictive pipeline to both data science experts and those without domain specific knowledge.
Our research aims to establish a robust predictive pipeline to both data science experts and those without domain specific knowledge.
arXiv Detail & Related papers (2023-09-29T03:33:53Z) - The RoboDepth Challenge: Methods and Advancements Towards Robust Depth Estimation [97.63185634482552]
We summarize the winning solutions from the RoboDepth Challenge.
The challenge was designed to facilitate and advance robust OoD depth estimation.
We hope this challenge could lay a solid foundation for future research on robust and reliable depth estimation.
arXiv Detail & Related papers (2023-07-27T17:59:56Z) - On the Opportunities and Risks of Foundation Models [256.61956234436553]
We call these models foundation models to underscore their critically central yet incomplete character.
This report provides a thorough account of the opportunities and risks of foundation models.
To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration.
arXiv Detail & Related papers (2021-08-16T17:50:08Z) - Predictive Analytics for Water Asset Management: Machine Learning and
Survival Analysis [55.41644538483948]
We study a statistical and machine learning framework for the prediction of water pipe failures.
We use a dataset containing the failure records of all pipes within the water distribution network in Barcelona, Spain.
The results shed light on the effect of important risk factors, such as pipe geometry, age, material, and soil cover, among others.
arXiv Detail & Related papers (2020-07-02T19:08:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.