REVAL: A Comprehension Evaluation on Reliability and Values of Large Vision-Language Models
- URL: http://arxiv.org/abs/2503.16566v1
- Date: Thu, 20 Mar 2025 07:54:35 GMT
- Title: REVAL: A Comprehension Evaluation on Reliability and Values of Large Vision-Language Models
- Authors: Jie Zhang, Zheng Yuan, Zhongqi Wang, Bei Yan, Sibo Wang, Xiangkui Cao, Zonghui Guo, Shiguang Shan, Xilin Chen,
- Abstract summary: REVAL is a comprehensive benchmark designed to evaluate the textbfREliability and textbfVALue of Large Vision-Language Models.<n>REVAL encompasses over 144K image-text Visual Question Answering (VQA) samples, structured into two primary sections: Reliability and Values.<n>We evaluate 26 models, including mainstream open-source LVLMs and prominent closed-source models like GPT-4o and Gemini-1.5-Pro.
- Score: 59.445672459851274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid evolution of Large Vision-Language Models (LVLMs) has highlighted the necessity for comprehensive evaluation frameworks that assess these models across diverse dimensions. While existing benchmarks focus on specific aspects such as perceptual abilities, cognitive capabilities, and safety against adversarial attacks, they often lack the breadth and depth required to provide a holistic understanding of LVLMs' strengths and limitations. To address this gap, we introduce REVAL, a comprehensive benchmark designed to evaluate the \textbf{RE}liability and \textbf{VAL}ue of LVLMs. REVAL encompasses over 144K image-text Visual Question Answering (VQA) samples, structured into two primary sections: Reliability, which assesses truthfulness (\eg, perceptual accuracy and hallucination tendencies) and robustness (\eg, resilience to adversarial attacks, typographic attacks, and image corruption), and Values, which evaluates ethical concerns (\eg, bias and moral understanding), safety issues (\eg, toxicity and jailbreak vulnerabilities), and privacy problems (\eg, privacy awareness and privacy leakage). We evaluate 26 models, including mainstream open-source LVLMs and prominent closed-source models like GPT-4o and Gemini-1.5-Pro. Our findings reveal that while current LVLMs excel in perceptual tasks and toxicity avoidance, they exhibit significant vulnerabilities in adversarial scenarios, privacy preservation, and ethical reasoning. These insights underscore critical areas for future improvements, guiding the development of more secure, reliable, and ethically aligned LVLMs. REVAL provides a robust framework for researchers to systematically assess and compare LVLMs, fostering advancements in the field.
Related papers
- A Comprehensive Survey on the Trustworthiness of Large Language Models in Healthcare [5.765614539740084]
The application of large language models (LLMs) in healthcare has the potential to revolutionize clinical decision-making, medical research, and patient care.<n>As LLMs are increasingly integrated into healthcare systems, several critical challenges must be addressed to ensure their reliable and ethical deployment.
arXiv Detail & Related papers (2025-02-21T18:43:06Z) - A Survey of Safety on Large Vision-Language Models: Attacks, Defenses and Evaluations [127.52707312573791]
This survey provides a comprehensive analysis of LVLM safety, covering key aspects such as attacks, defenses, and evaluation methods.<n>We introduce a unified framework that integrates these interrelated components, offering a holistic perspective on the vulnerabilities of LVLMs.<n>We conduct a set of safety evaluations on the latest LVLM, Deepseek Janus-Pro, and provide a theoretical analysis of the results.
arXiv Detail & Related papers (2025-02-14T08:42:43Z) - Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey [92.36487127683053]
Retrieval-Augmented Generation (RAG) is an advanced technique designed to address the challenges of Artificial Intelligence-Generated Content (AIGC)<n>RAG provides reliable and up-to-date external knowledge, reduces hallucinations, and ensures relevant context across a wide range of tasks.<n>Despite RAG's success and potential, recent studies have shown that the RAG paradigm also introduces new risks, including privacy concerns, adversarial attacks, and accountability issues.
arXiv Detail & Related papers (2025-02-08T06:50:47Z) - Retention Score: Quantifying Jailbreak Risks for Vision Language Models [60.48306899271866]
Vision-Language Models (VLMs) are integrated with Large Language Models (LLMs) to enhance multi-modal machine learning capabilities.
This paper aims to assess the resilience of VLMs against jailbreak attacks that can compromise model safety compliance and result in harmful outputs.
To evaluate a VLM's ability to maintain its robustness against adversarial input perturbations, we propose a novel metric called the textbfRetention Score.
arXiv Detail & Related papers (2024-12-23T13:05:51Z) - ETA: Evaluating Then Aligning Safety of Vision Language Models at Inference Time [12.160713548659457]
adversarial visual inputs can easily bypass VLM defense mechanisms.
We propose a novel two-phase inference-time alignment framework, evaluating input visual contents and output responses.
Experiments show that ETA outperforms baseline methods in terms of harmlessness, helpfulness, and efficiency.
arXiv Detail & Related papers (2024-10-09T07:21:43Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG) has quickly grown into a pivotal paradigm in the development of Large Language Models (LLMs)
We propose a unified framework that assesses the trustworthiness of RAG systems across six key dimensions: factuality, robustness, fairness, transparency, accountability, and privacy.
arXiv Detail & Related papers (2024-09-16T09:06:44Z) - CLAVE: An Adaptive Framework for Evaluating Values of LLM Generated Responses [34.77031649891843]
We introduce CLAVE, a novel framework which integrates two complementary Large Language Models (LLMs)
This dual-model approach enables calibration with any value systems using 100 human-labeled samples per value type.
We present ValEval, a comprehensive dataset comprising 13k+ (text,value,label) 12+s across diverse domains, covering three major value systems.
arXiv Detail & Related papers (2024-07-15T13:51:37Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
Large Vision-Language Models (LVLMs) suffer from hallucination issues, wherein the models generate plausible-sounding but factually incorrect outputs.
Existing benchmarks are often limited in scope, focusing mainly on object hallucinations.
We introduce a multi-dimensional benchmark covering objects, attributes, and relations, with challenging images selected based on associative biases.
arXiv Detail & Related papers (2024-04-22T04:49:22Z) - KNVQA: A Benchmark for evaluation knowledge-based VQA [8.602776661652083]
Large vision-language models (LVLMs) have made significant progress due to their strong perception and reasoning capabilities in the visual and language systems.
LVLMs are still plagued by the two critical issues of object hallucination and factual accuracy, which limit the practicality of LVLMs in different scenarios.
We propose a novel KNVQA-Eval, which is devoted to knowledge-based VQA task evaluation to reflect the factuality of multimodal LVLMs.
arXiv Detail & Related papers (2023-11-21T14:39:18Z) - A Survey of Safety and Trustworthiness of Large Language Models through
the Lens of Verification and Validation [21.242078120036176]
Large Language Models (LLMs) have exploded a new heatwave of AI for their ability to engage end-users in human-level conversations.
This survey concerns their safety and trustworthiness in industrial applications.
arXiv Detail & Related papers (2023-05-19T02:41:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.