DeepSeek-Inspired Exploration of RL-based LLMs and Synergy with Wireless Networks: A Survey
- URL: http://arxiv.org/abs/2503.09956v3
- Date: Thu, 17 Apr 2025 01:30:17 GMT
- Title: DeepSeek-Inspired Exploration of RL-based LLMs and Synergy with Wireless Networks: A Survey
- Authors: Yu Qiao, Phuong-Nam Tran, Ji Su Yoon, Loc X. Nguyen, Eui-Nam Huh, Dusit Niyato, Choong Seon Hong,
- Abstract summary: Reinforcement learning (RL)-based large language models (LLMs) have gained significant attention.<n> Wireless networks require the empowerment of RL-based LLMs.<n> Wireless networks provide a vital infrastructure for the efficient training, deployment, and distributed inference of RL-based LLMs.
- Score: 62.697565282841026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL)-based large language models (LLMs), such as ChatGPT, DeepSeek, and Grok-3, have gained significant attention for their exceptional capabilities in natural language processing and multimodal data understanding. Meanwhile, the rapid expansion of information services has driven the growing need for intelligence, efficient, and adaptable wireless networks. Wireless networks require the empowerment of RL-based LLMs while these models also benefit from wireless networks to broaden their application scenarios. Specifically, RL-based LLMs can enhance wireless communication systems through intelligent resource allocation, adaptive network optimization, and real-time decision-making. Conversely, wireless networks provide a vital infrastructure for the efficient training, deployment, and distributed inference of RL-based LLMs, especially in decentralized and edge computing environments. This mutual empowerment highlights the need for a deeper exploration of the interplay between these two domains. We first review recent advancements in wireless communications, highlighting the associated challenges and potential solutions. We then discuss the progress of RL-based LLMs, focusing on key technologies for LLM training, challenges, and potential solutions. Subsequently, we explore the mutual empowerment between these two fields, highlighting key motivations, open challenges, and potential solutions. Finally, we provide insights into future directions, applications, and their societal impact to further explore this intersection, paving the way for next-generation intelligent communication systems. Overall, this survey provides a comprehensive overview of the relationship between RL-based LLMs and wireless networks, offering a vision where these domains empower each other to drive innovations.
Related papers
- LLM-Guided Open RAN: Empowering Hierarchical RAN Intelligent Control [56.94324843095396]
We propose the empowered hierarchical RIC (LLM-hRIC) framework to improve the collaboration between RICs.
This framework integrates LLMs with reinforcement learning (RL) for efficient network resource management.
We evaluate the LLM-hRIC framework in an integrated access and backhaul (IAB) network setting.
arXiv Detail & Related papers (2025-04-25T04:18:23Z) - Offline and Distributional Reinforcement Learning for Wireless Communications [5.771885923067511]
Traditional online reinforcement learning (RL) and deep RL methods face limitations in real-time wireless networks.
We focus on offline and distributional RL, two advanced RL techniques that can overcome these challenges.
We introduce a novel framework that combines offline and distributional RL for wireless communication applications.
arXiv Detail & Related papers (2025-04-04T09:24:39Z) - A Survey on Large Language Models for Communication, Network, and Service Management: Application Insights, Challenges, and Future Directions [37.427638898804055]
Large Language Models (LLMs) have received tremendous attention due to their unparalleled capabilities in various Natural Language Processing (NLP) tasks.<n>This survey investigates the integration of LLMs across different communication network domains, including mobile networks and related technologies, vehicular networks, cloud-based networks, and fog/edge-based networks.
arXiv Detail & Related papers (2024-12-16T20:01:36Z) - NetOrchLLM: Mastering Wireless Network Orchestration with Large Language Models [11.015852090523229]
Large language models (LLMs) have revolutionized various domains by leveraging their sophisticated natural language understanding capabilities.<n>This paper presents NETORCHLLM, a wireless NETwork ORCHestrator LLM framework that seamlessly orchestrates diverse wireless-specific models.<n>A comprehensive framework is introduced, demonstrating the practical viability of our approach.
arXiv Detail & Related papers (2024-12-13T12:48:15Z) - WirelessLLM: Empowering Large Language Models Towards Wireless Intelligence [16.722524706176767]
Large Language Models (LLMs) have sparked interest in their potential to revolutionize wireless communication systems.
Existing studies on LLMs for wireless systems are limited to a direct application for telecom language understanding.
This paper proposes WirelessLLM, a comprehensive framework for adapting and enhancing LLMs to address the unique challenges and requirements of wireless communication networks.
arXiv Detail & Related papers (2024-05-27T11:18:25Z) - Large Language Models (LLMs) Assisted Wireless Network Deployment in Urban Settings [0.21847754147782888]
Large Language Models (LLMs) have revolutionized language understanding and human-like text generation.
This paper explores new techniques to harness the power of LLMs for 6G (6th Generation) wireless communication technologies.
We introduce a novel Reinforcement Learning (RL) based framework that leverages LLMs for network deployment in wireless communications.
arXiv Detail & Related papers (2024-05-22T05:19:51Z) - The Role of Federated Learning in a Wireless World with Foundation Models [59.8129893837421]
Foundation models (FMs) are general-purpose artificial intelligence (AI) models that have recently enabled multiple brand-new generative AI applications.
Currently, the exploration of the interplay between FMs and federated learning (FL) is still in its nascent stage.
This article explores the extent to which FMs are suitable for FL over wireless networks, including a broad overview of research challenges and opportunities.
arXiv Detail & Related papers (2023-10-06T04:13:10Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
Next-generation wireless networks will enable many machine learning (ML) tools and applications to analyze various types of data collected by edge devices.
Distributed learning and inference techniques have been proposed as a means to enable edge devices to collaboratively train ML models without raw data exchanges.
This paper provides a comprehensive study of how distributed learning can be efficiently and effectively deployed over wireless edge networks.
arXiv Detail & Related papers (2021-04-05T20:57:56Z) - Intelligent Reflecting Surface Aided Wireless Communications: A Tutorial [64.77665786141166]
Intelligent reflecting surface (IRS) is an enabling technology to engineer the radio signal prorogation in wireless networks.
IRS is capable of dynamically altering wireless channels to enhance the communication performance.
Despite its great potential, IRS faces new challenges to be efficiently integrated into wireless networks.
arXiv Detail & Related papers (2020-07-06T13:59:09Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.