A Survey on Large Language Models for Communication, Network, and Service Management: Application Insights, Challenges, and Future Directions
- URL: http://arxiv.org/abs/2412.19823v1
- Date: Mon, 16 Dec 2024 20:01:36 GMT
- Title: A Survey on Large Language Models for Communication, Network, and Service Management: Application Insights, Challenges, and Future Directions
- Authors: Gordon Owusu Boateng, Hani Sami, Ahmed Alagha, Hanae Elmekki, Ahmad Hammoud, Rabeb Mizouni, Azzam Mourad, Hadi Otrok, Jamal Bentahar, Sami Muhaidat, Chamseddine Talhi, Zbigniew Dziong, Mohsen Guizani,
- Abstract summary: Large Language Models (LLMs) have received tremendous attention due to their unparalleled capabilities in various Natural Language Processing (NLP) tasks.
This survey investigates the integration of LLMs across different communication network domains, including mobile networks and related technologies, vehicular networks, cloud-based networks, and fog/edge-based networks.
- Score: 37.427638898804055
- License:
- Abstract: The rapid evolution of communication networks in recent decades has intensified the need for advanced Network and Service Management (NSM) strategies to address the growing demands for efficiency, scalability, enhanced performance, and reliability of these networks. Large Language Models (LLMs) have received tremendous attention due to their unparalleled capabilities in various Natural Language Processing (NLP) tasks and generating context-aware insights, offering transformative potential for automating diverse communication NSM tasks. Contrasting existing surveys that consider a single network domain, this survey investigates the integration of LLMs across different communication network domains, including mobile networks and related technologies, vehicular networks, cloud-based networks, and fog/edge-based networks. First, the survey provides foundational knowledge of LLMs, explicitly detailing the generic transformer architecture, general-purpose and domain-specific LLMs, LLM model pre-training and fine-tuning, and their relation to communication NSM. Under a novel taxonomy of network monitoring and reporting, AI-powered network planning, network deployment and distribution, and continuous network support, we extensively categorize LLM applications for NSM tasks in each of the different network domains, exploring existing literature and their contributions thus far. Then, we identify existing challenges and open issues, as well as future research directions for LLM-driven communication NSM, emphasizing the need for scalable, adaptable, and resource-efficient solutions that align with the dynamic landscape of communication networks. We envision that this survey serves as a holistic roadmap, providing critical insights for leveraging LLMs to enhance NSM.
Related papers
- AI Flow at the Network Edge [58.31090055138711]
AI Flow is a framework that streamlines the inference process by jointly leveraging the heterogeneous resources available across devices, edge nodes, and cloud servers.
This article serves as a position paper for identifying the motivation, challenges, and principles of AI Flow.
arXiv Detail & Related papers (2024-11-19T12:51:17Z) - Leveraging Large Language Models for Integrated Satellite-Aerial-Terrestrial Networks: Recent Advances and Future Directions [47.791246017237]
Integrated satellite, aerial, and terrestrial networks (ISATNs) represent a sophisticated convergence of diverse communication technologies.
This paper explores the transformative potential of integrating Large Language Models (LLMs) into ISATNs.
arXiv Detail & Related papers (2024-07-05T15:23:43Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - Large Language Model (LLM) for Telecommunications: A Comprehensive Survey on Principles, Key Techniques, and Opportunities [36.711166825551715]
Large language models (LLMs) have received considerable attention recently due to their outstanding comprehension and reasoning capabilities.
This work aims to provide a comprehensive overview of LLM-enabled telecom networks.
arXiv Detail & Related papers (2024-05-17T14:46:13Z) - Large Language Models for Networking: Workflow, Advances and Challenges [19.104593453342304]
The networking field is characterized by its high complexity and rapid iteration.
Traditional machine learning-based methods struggle to generalize and automate complex tasks in networking.
The recent emergence of large language models (LLMs) has sparked a new wave of possibilities in addressing these challenges.
arXiv Detail & Related papers (2024-04-19T14:17:02Z) - Can LLMs Understand Computer Networks? Towards a Virtual System Administrator [15.469010487781931]
This paper is the first to conduct an exhaustive study on Large Language Models' comprehension of computer networks.
We evaluate our framework on multiple computer networks employing proprietary (e.g., GPT4) and open-source (e.g., Llama2) models.
arXiv Detail & Related papers (2024-04-19T07:41:54Z) - NetLLM: Adapting Large Language Models for Networking [36.61572542761661]
We present NetLLM, the first framework that provides a coherent design to harness the powerful capabilities of LLMs with low efforts to solve networking problems.
Specifically, NetLLM empowers the LLM to effectively process multimodal data in networking and efficiently generate task-specific answers.
arXiv Detail & Related papers (2024-02-04T04:21:34Z) - Large Language Model Enhanced Multi-Agent Systems for 6G Communications [94.45712802626794]
We propose a multi-agent system with customized communication knowledge and tools for solving communication related tasks using natural language.
We validate the effectiveness of the proposed multi-agent system by designing a semantic communication system.
arXiv Detail & Related papers (2023-12-13T02:35:57Z) - Communication-Efficient and Distributed Learning Over Wireless Networks:
Principles and Applications [55.65768284748698]
Machine learning (ML) is a promising enabler for the fifth generation (5G) communication systems and beyond.
This article aims to provide a holistic overview of relevant communication and ML principles, and thereby present communication-efficient and distributed learning frameworks with selected use cases.
arXiv Detail & Related papers (2020-08-06T12:37:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.