論文の概要: Label Unbalance in High-frequency Trading
- arxiv url: http://arxiv.org/abs/2503.09988v1
- Date: Thu, 13 Mar 2025 02:55:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:53:58.435704
- Title: Label Unbalance in High-frequency Trading
- Title(参考訳): 高周波取引におけるラベルアンバランス
- Authors: Zijian Zhao, Xuming Chen, Jiayu Wen, Mingwen Liu, Xiaoteng Ma,
- Abstract要約: 金融取引において、リターン予測は取引システムの成功の基盤の1つである。
本稿では,包括的ラベル不均衡調整手法を用いた厳密なエンドツーエンドディープラーニングフレームワークを採用する。
われわれは将来の中国市場での高頻度リターンの予測に成功している。
- 参考スコア(独自算出の注目度): 6.433583843878294
- License:
- Abstract: In financial trading, return prediction is one of the foundation for a successful trading system. By the fast development of the deep learning in various areas such as graphical processing, natural language, it has also demonstrate significant edge in handling with financial data. While the success of the deep learning relies on huge amount of labeled sample, labeling each time/event as profitable or unprofitable, under the transaction cost, especially in the high-frequency trading world, suffers from serious label imbalance issue.In this paper, we adopts rigurious end-to-end deep learning framework with comprehensive label imbalance adjustment methods and succeed in predicting in high-frequency return in the Chinese future market. The code for our method is publicly available at https://github.com/RS2002/Label-Unbalance-in-High-Frequency-Trading .
- Abstract(参考訳): 金融取引において、リターン予測は取引システムの成功の基盤の1つである。
グラフィカル処理や自然言語など,さまざまな分野におけるディープラーニングの急速な発展により,金融データ処理の最先端性も示している。
ディープラーニングの成功は、膨大な量のラベル付きサンプルに依存しており、取引コスト、特に高頻度取引の世界においては、取引コストにおいて、深刻なラベル不均衡の問題に悩まされており、包括的ラベル不均衡調整手法による厳密なエンド・ツー・エンドのディープラーニングフレームワークを採用し、中国の先進市場における高周波リターンの予測に成功している。
私たちのメソッドのコードはhttps://github.com/RS2002/Label-Un Balance-in-High-Frequency-Trading で公開されています。
関連論文リスト
- Combining Deep Learning on Order Books with Reinforcement Learning for
Profitable Trading [0.0]
本研究は,注文フローを用いた複数地平線におけるリターン予測と,5つの金融機器を対象とした3つの時間差不均衡学習モデルを訓練することに焦点を当てる。
この結果は潜在的な可能性を証明しているが、小売取引コスト、滑り込み、スプレッド・揺らぎを完全に処理するためには、一貫した黒字取引のためのさらなる最小限の修正が必要である。
論文 参考訳(メタデータ) (2023-10-24T15:58:58Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Data Cross-Segmentation for Improved Generalization in Reinforcement
Learning Based Algorithmic Trading [5.75899596101548]
本稿では,学習した予測モデルからの信号に基づいて処理を行う強化学習(RL)アルゴリズムを提案する。
われわれのアルゴリズムは、ブルサ・マレーシアの20年以上のエクイティデータに基づいてテストしている。
論文 参考訳(メタデータ) (2023-07-18T16:00:02Z) - SoftMatch: Addressing the Quantity-Quality Trade-off in Semi-supervised
Learning [101.86916775218403]
本稿では, サンプル重み付けを統一した定式化により, 一般的な擬似ラベル法を再検討する。
トレーニング中の擬似ラベルの量と質を両立させることでトレードオフを克服するSoftMatchを提案する。
実験では、画像、テキスト、不均衡な分類など、さまざまなベンチマークで大幅に改善されている。
論文 参考訳(メタデータ) (2023-01-26T03:53:25Z) - Denoised Labels for Financial Time-Series Data via Self-Supervised
Learning [5.743034166791607]
この研究は、トレーディングにおける画像分類と自己指導型学習の成功から着想を得ている。
本稿では,コンピュータビジョンの手法を金融時系列に適用し,騒音暴露を減らすという考え方について検討する。
以上の結果から,分類ラベルにより下流学習アルゴリズムの性能が向上することが示唆された。
論文 参考訳(メタデータ) (2021-12-19T12:54:20Z) - FinRL: Deep Reinforcement Learning Framework to Automate Trading in
Quantitative Finance [22.808509136431645]
深層強化学習(DRL)は、量的ファイナンスにおいて競争力を持つと想定されている。
本稿では,オープンソースのフレームワーク textitFinRL を,量的トレーダーが学習曲線の急勾配を克服するのに役立つための完全なパイプラインとして提示する。
論文 参考訳(メタデータ) (2021-11-07T00:34:32Z) - Bilinear Input Normalization for Neural Networks in Financial
Forecasting [101.89872650510074]
本稿では,高頻度金融時系列を扱うディープニューラルネットワークのための新しいデータ駆動正規化手法を提案する。
提案手法は,財務時系列のバイモーダル特性を考慮したものである。
我々の実験は最先端のニューラルネットワークと高周波データを用いて行われ、他の正規化技術よりも大幅に改善された。
論文 参考訳(メタデータ) (2021-09-01T07:52:03Z) - Trade When Opportunity Comes: Price Movement Forecasting via Locality-Aware Attention and Iterative Refinement Labeling [11.430440350359993]
2つの主成分を持つ価格変動予測フレームワークであるLARAを提案する。
LA-Attentionはマスク付きアテンションスキームを通じて潜在的に有益なサンプルを抽出する。
RA-Labelingは、潜在的に利益の出るサンプルのうるさいラベルを洗練させる。
LARAは、Qlibの量的投資プラットフォーム上で、いくつかの機械学習ベースの手法を大幅に上回っている。
論文 参考訳(メタデータ) (2021-07-26T05:52:42Z) - Disentangling Sampling and Labeling Bias for Learning in Large-Output
Spaces [64.23172847182109]
異なる負のサンプリングスキームが支配的ラベルと稀なラベルで暗黙的にトレードオフパフォーマンスを示す。
すべてのラベルのサブセットで作業することで生じるサンプリングバイアスと、ラベルの不均衡に起因するデータ固有のラベルバイアスの両方に明示的に対処する統一された手段を提供する。
論文 参考訳(メタデータ) (2021-05-12T15:40:13Z) - Boosting Semi-Supervised Face Recognition with Noise Robustness [54.342992887966616]
本稿では,自動ラベルによるラベル雑音に対して頑健な半教師付き顔認識に対する効果的な解法を提案する。
そこで我々は,gnが強化するロバストな学習能力に基づく,ノイズロバスト学習ラベリング(nroll)という,半教師付き顔認識ソリューションを開発した。
論文 参考訳(メタデータ) (2021-05-10T14:43:11Z) - Fairness Constraints in Semi-supervised Learning [56.48626493765908]
我々は,最適化問題として定式化された,公平な半教師付き学習のためのフレームワークを開発する。
偏り・分散・雑音分解による半教師あり学習における識別源を理論的に分析する。
本手法は, 公平な半教師付き学習を達成でき, 公正な教師付き学習よりも精度と公平性のトレードオフが良好である。
論文 参考訳(メタデータ) (2020-09-14T04:25:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。