A New Benchmark for Few-Shot Class-Incremental Learning: Redefining the Upper Bound
- URL: http://arxiv.org/abs/2503.10003v1
- Date: Thu, 13 Mar 2025 03:25:29 GMT
- Title: A New Benchmark for Few-Shot Class-Incremental Learning: Redefining the Upper Bound
- Authors: Shiwon Kim, Dongjun Hwang, Sungwon Woo, Rita Singh,
- Abstract summary: Class-incremental learning (CIL) aims to continuously adapt to emerging classes while retaining knowledge of previously learned ones.<n>Few-shot class-incremental learning (FSCIL) presents an even greater challenge which requires the model to learn incremental classes with only a limited number of samples.<n>We introduce a new joint training benchmark tailored for FSCIL by integrating imbalance-aware techniques.
- Score: 9.682677147166391
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Class-incremental learning (CIL) aims to continuously adapt to emerging classes while retaining knowledge of previously learned ones. Few-shot class-incremental learning (FSCIL) presents an even greater challenge which requires the model to learn incremental classes with only a limited number of samples. In conventional CIL, joint training is widely considered the upper bound, serving as both a benchmark and a methodological guide. However, we find that joint training fails to be a meaningful upper bound in FSCIL due to the inherent difficulty of inter-task class separation (ICS) caused by severe class imbalance. In this work, we introduce a new joint training benchmark tailored for FSCIL by integrating imbalance-aware techniques, effectively bridging the performance gap between base and incremental classes. Furthermore, we point out inconsistencies in the experimental setup and evaluation of existing FSCIL methods. To ensure fair comparisons between different FSCIL approaches and joint training, we standardize training conditions and propose a unified evaluation protocol that simultaneously considers the validation set and computational complexity. By establishing a reliable upper bound and a standardized evaluation framework for FSCIL, our work provides a clear benchmark and a practical foundation for future research.
Related papers
- CLOSER: Towards Better Representation Learning for Few-Shot Class-Incremental Learning [52.63674911541416]
Few-shot class-incremental learning (FSCIL) faces several challenges, such as overfitting and forgetting.
Our primary focus is representation learning on base classes to tackle the unique challenge of FSCIL.
We find that trying to secure the spread of features within a more confined feature space enables the learned representation to strike a better balance between transferability and discriminability.
arXiv Detail & Related papers (2024-10-08T02:23:16Z) - Few-shot Tuning of Foundation Models for Class-incremental Learning [19.165004570789755]
We propose a new approach to continually tune foundation models for new classes in few-shot settings.
CoACT shows up to 13.5% improvement in standard FSCIL over the current SOTA on benchmark evaluations.
arXiv Detail & Related papers (2024-05-26T16:41:03Z) - MetaCoCo: A New Few-Shot Classification Benchmark with Spurious Correlation [46.50551811108464]
We present a benchmark with spurious-correlation shifts collected from real-world scenarios.
We also propose a metric by using CLIP as a pre-trained vision-language model.
The experimental results show that the performance of the existing methods degrades significantly in the presence of spurious-correlation shifts.
arXiv Detail & Related papers (2024-04-30T15:45:30Z) - Controllable Relation Disentanglement for Few-Shot Class-Incremental Learning [82.79371269942146]
We propose to tackle FewShot Class-Incremental Learning (FSCIL) from a new perspective, i.e., relation disentanglement.
The challenge of disentangling spurious correlations lies in the poor controllability of FSCIL.
We propose a new simple-yeteffective method, called ConTrollable Relation-disentang FewShot Class-Incremental Learning (CTRL-FSCIL)
arXiv Detail & Related papers (2024-03-17T03:16:59Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Few-Shot Class-Incremental Learning with Prior Knowledge [94.95569068211195]
We propose Learning with Prior Knowledge (LwPK) to enhance the generalization ability of the pre-trained model.
Experimental results indicate that LwPK effectively enhances the model resilience against catastrophic forgetting.
arXiv Detail & Related papers (2024-02-02T08:05:35Z) - Bias Mitigating Few-Shot Class-Incremental Learning [17.185744533050116]
Few-shot class-incremental learning aims at recognizing novel classes continually with limited novel class samples.
Recent methods somewhat alleviate the accuracy imbalance between base and incremental classes by fine-tuning the feature extractor in the incremental sessions.
We propose a novel method to mitigate model bias of the FSCIL problem during training and inference processes.
arXiv Detail & Related papers (2024-02-01T10:37:41Z) - Relaxed Contrastive Learning for Federated Learning [48.96253206661268]
We propose a novel contrastive learning framework to address the challenges of data heterogeneity in federated learning.
Our framework outperforms all existing federated learning approaches by huge margins on the standard benchmarks.
arXiv Detail & Related papers (2024-01-10T04:55:24Z) - Margin-Based Few-Shot Class-Incremental Learning with Class-Level
Overfitting Mitigation [19.975435754433754]
Few-shot class-incremental learning (FSCIL) is designed to incrementally recognize novel classes with only few training samples.
A well known modification to the base-class training is to apply a margin to the base-class classification.
We propose a novel margin-based FSCIL method to mitigate the CO problem by providing the pattern learning process with extra constraint from the margin-based patterns themselves.
arXiv Detail & Related papers (2022-10-10T09:45:53Z) - You Only Need End-to-End Training for Long-Tailed Recognition [8.789819609485225]
Cross-entropy loss tends to produce highly correlated features on imbalanced data.
We propose two novel modules, Block-based Relatively Balanced Batch Sampler (B3RS) and Batch Embedded Training (BET)
Experimental results on the long-tailed classification benchmarks, CIFAR-LT and ImageNet-LT, demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2021-12-11T11:44:09Z) - Few-shot Action Recognition with Prototype-centered Attentive Learning [88.10852114988829]
Prototype-centered Attentive Learning (PAL) model composed of two novel components.
First, a prototype-centered contrastive learning loss is introduced to complement the conventional query-centered learning objective.
Second, PAL integrates a attentive hybrid learning mechanism that can minimize the negative impacts of outliers.
arXiv Detail & Related papers (2021-01-20T11:48:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.