論文の概要: RSR-NF: Neural Field Regularization by Static Restoration Priors for Dynamic Imaging
- arxiv url: http://arxiv.org/abs/2503.10015v1
- Date: Thu, 13 Mar 2025 03:50:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:53:53.869176
- Title: RSR-NF: Neural Field Regularization by Static Restoration Priors for Dynamic Imaging
- Title(参考訳): RSR-NF:動的イメージングのための静的復元による神経磁場規則化
- Authors: Berk Iskender, Sushan Nakarmi, Nitin Daphalapurkar, Marc L. Klasky, Yoram Bresler,
- Abstract要約: 動的CT(Dynamic Computed Tomography)の逆問題では、1つの視野角に1つの投影しか得られない。
地平線動データは通常、教師あり学習技術に使用するには利用できないか不足している。
可変分割を持つADMMに基づくアルゴリズムを用いて、変動目標を効率的に最適化する。
- 参考スコア(独自算出の注目度): 5.569092860148177
- License:
- Abstract: Dynamic imaging involves the reconstruction of a spatio-temporal object at all times using its undersampled measurements. In particular, in dynamic computed tomography (dCT), only a single projection at one view angle is available at a time, making the inverse problem very challenging. Moreover, ground-truth dynamic data is usually either unavailable or too scarce to be used for supervised learning techniques. To tackle this problem, we propose RSR-NF, which uses a neural field (NF) to represent the dynamic object and, using the Regularization-by-Denoising (RED) framework, incorporates an additional static deep spatial prior into a variational formulation via a learned restoration operator. We use an ADMM-based algorithm with variable splitting to efficiently optimize the variational objective. We compare RSR-NF to three alternatives: NF with only temporal regularization; a recent method combining a partially-separable low-rank representation with RED using a denoiser pretrained on static data; and a deep-image prior-based model. The first comparison demonstrates the reconstruction improvements achieved by combining the NF representation with static restoration priors, whereas the other two demonstrate the improvement over state-of-the art techniques for dCT.
- Abstract(参考訳): ダイナミックイメージングでは、常に時空間の物体をアンダーサンプルで再現する。
特に動的計算トモグラフィー(dCT)では、1つの視野角で1つの投影しか利用できないため、逆問題は非常に困難である。
さらに、地平線動データは通常、教師あり学習技術に使用するには利用できないか、不足しているかのいずれかである。
この問題に対処するために,ニューラルネットワーク(NF)を用いて動的対象を表現するRSR-NFと,学習された復元演算子による変分式化に先立って,新たな静的深部空間を組み込んだREDフレームワークを提案する。
可変分割を持つADMMに基づくアルゴリズムを用いて、変動目標を効率的に最適化する。
RSR-NFを時間正規化のみのNF、静的データに事前学習したデノイザを用いた部分分離可能な低ランク表現とREDを組み合わせた最近の手法、深層画像の事前ベースモデル、の3つの選択肢と比較する。
第1回比較では,NF表現と静的復元前処理を組み合わせた再現性の向上が示され,他の2回では,DCTの最先端技術の改善が示されている。
関連論文リスト
- Dynamic-Aware Spatio-temporal Representation Learning for Dynamic MRI Reconstruction [7.704793488616996]
InRに基づく動的MRI再構成モデルであるDynamic-Aware INR (DA-INR)を提案する。
画像領域におけるダイナミックMRIデータの空間的・時間的連続性を捉え、データの時間的冗長性をモデル構造に明示的に組み込む。
その結果、DA-INRは極端アンサンプ比でも復元品質で他のモデルより優れる。
論文 参考訳(メタデータ) (2025-01-15T12:11:33Z) - NODER: Image Sequence Regression Based on Neural Ordinary Differential Equations [2.711538918087856]
本稿では,ニューラル常微分方程式を利用して複雑な基礎となる力学を捉える,NODERという最適化に基づく新しいフレームワークを提案する。
本モデルでは,特に臨床状況において,予測のために数枚の画像のみを必要とする。
論文 参考訳(メタデータ) (2024-07-18T07:50:46Z) - Enhancing Dynamic CT Image Reconstruction with Neural Fields and Optical Flow [0.0]
偏微分方程式に基づく動的逆問題に対する明示的運動正規化器の導入の利点を示す。
また、ニューラルネットワークをグリッドベースの解法と比較し、前者はPSNRで後者より優れていることを示す。
論文 参考訳(メタデータ) (2024-06-03T13:07:29Z) - Graph Image Prior for Unsupervised Dynamic Cardiac Cine MRI Reconstruction [10.330083869344445]
グラフ画像優先(GIP)と呼ばれる動的MRI表現のための新しい手法を提案する。
GIPは2段階生成ネットワークを新しいモデリング手法に採用し、まず独立したCNNを用いて各フレームのイメージ構造を復元する。
グラフ畳み込みネットワークは特徴融合と画像生成に利用される。
論文 参考訳(メタデータ) (2024-03-23T08:57:46Z) - EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via
Self-Supervision [85.17951804790515]
EmerNeRFは動的駆動シーンの時空間表現を学習するためのシンプルだが強力なアプローチである。
シーンの幾何学、外観、動き、セマンティクスを自己ブートストラップで同時にキャプチャする。
本手法はセンサシミュレーションにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2023-11-03T17:59:55Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - RED-PSM: Regularization by Denoising of Factorized Low Rank Models for Dynamic Imaging [6.527016551650136]
ダイナミックトモグラフィーでは、1つのビュー角で1つのプロジェクションのみを同時に利用することができる。
本稿では,この課題に対処する2つの強力な手法を組み合わせたRED-PSMを提案する。
論文 参考訳(メタデータ) (2023-04-07T05:29:59Z) - Making Reconstruction-based Method Great Again for Video Anomaly
Detection [64.19326819088563]
ビデオの異常検出は重要な問題だが、難しい問題だ。
既存の再構成に基づく手法は、昔ながらの畳み込みオートエンコーダに依存している。
連続フレーム再構築のための新しいオートエンコーダモデルを提案する。
論文 参考訳(メタデータ) (2023-01-28T01:57:57Z) - Learning a Model-Driven Variational Network for Deformable Image
Registration [89.9830129923847]
VR-Netは、教師なしの変形可能な画像登録のための新しいカスケード可変ネットワークである。
登録精度において最先端のディープラーニング手法よりも優れています。
ディープラーニングの高速推論速度と変分モデルのデータ効率を維持している。
論文 参考訳(メタデータ) (2021-05-25T21:37:37Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
強い散乱準透明物体の有限角トモグラフィーは困難で、非常に不適切な問題である。
このような問題の状況を改善することにより、アーティファクトの削減には、事前の定期化が必要である。
我々は,新しい分割畳み込みゲート再帰ユニット(SC-GRU)をビルディングブロックとして,リカレントニューラルネットワーク(RNN)アーキテクチャを考案した。
論文 参考訳(メタデータ) (2020-07-21T11:48:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。