論文の概要: Deep Learning Approaches for Anti-Money Laundering on Mobile Transactions: Review, Framework, and Directions
- arxiv url: http://arxiv.org/abs/2503.10058v1
- Date: Thu, 13 Mar 2025 05:19:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:55:02.507073
- Title: Deep Learning Approaches for Anti-Money Laundering on Mobile Transactions: Review, Framework, and Directions
- Title(参考訳): モバイルトランザクションにおけるアンチモニー洗浄のためのディープラーニングアプローチ: レビュー,フレームワーク,方向性
- Authors: Jiani Fan, Lwin Khin Shar, Ruichen Zhang, Ziyao Liu, Wenzhuo Yang, Dusit Niyato, Bomin Mao, Kwok-Yan Lam,
- Abstract要約: マネーロンダリング(英: Money laundering)は、不正資金の起源を隠蔽する金融犯罪である。
モバイル決済プラットフォームとスマートIoTデバイスの普及は、マネーロンダリング対策をかなり複雑にしている。
本稿では,AMLにおけるディープラーニングソリューションとその利用に関する課題について,包括的レビューを行う。
- 参考スコア(独自算出の注目度): 51.43521977132062
- License:
- Abstract: Money laundering is a financial crime that obscures the origin of illicit funds, necessitating the development and enforcement of anti-money laundering (AML) policies by governments and organizations. The proliferation of mobile payment platforms and smart IoT devices has significantly complicated AML investigations. As payment networks become more interconnected, there is an increasing need for efficient real-time detection to process large volumes of transaction data on heterogeneous payment systems by different operators such as digital currencies, cryptocurrencies and account-based payments. Most of these mobile payment networks are supported by connected devices, many of which are considered loT devices in the FinTech space that constantly generate data. Furthermore, the growing complexity and unpredictability of transaction patterns across these networks contribute to a higher incidence of false positives. While machine learning solutions have the potential to enhance detection efficiency, their application in AML faces unique challenges, such as addressing privacy concerns tied to sensitive financial data and managing the real-world constraint of limited data availability due to data regulations. Existing surveys in the AML literature broadly review machine learning approaches for money laundering detection, but they often lack an in-depth exploration of advanced deep learning techniques - an emerging field with significant potential. To address this gap, this paper conducts a comprehensive review of deep learning solutions and the challenges associated with their use in AML. Additionally, we propose a novel framework that applies the least-privilege principle by integrating machine learning techniques, codifying AML red flags, and employing account profiling to provide context for predictions and enable effective fraud detection under limited data availability....
- Abstract(参考訳): マネーロンダリング(マネーロンダリング、英: Money laundering)は、政府や組織による反マネーロンダリング(英語版)(英語版) (AML) 政策の開発と実施を必要とする不正資金の起源を曖昧にする金融犯罪である。
モバイル支払いプラットフォームとスマートIoTデバイスの普及は、AMLの調査を著しく複雑にしている。
支払いネットワークの相互接続が高まるにつれ、デジタル通貨、暗号通貨、口座ベースの決済など、さまざまなオペレーターによる不均一な決済システム上の大量のトランザクションデータを処理するための効率的なリアルタイム検出の必要性が高まっている。
これらのモバイル決済ネットワークの多くは、接続されたデバイスによってサポートされており、その多くは、常にデータを生成するFinTech空間のloTデバイスと見なされている。
さらに、これらのネットワーク間のトランザクションパターンの複雑さの増加と予測不可能さは、偽陽性の発生率の上昇に寄与する。
機械学習ソリューションは検出効率を向上させる可能性があるが、AMLのアプリケーションは、機密性の高い財務データに関連するプライバシー上の懸念に対処し、データ規制による制限されたデータ可用性の現実的な制約を管理するなど、ユニークな課題に直面している。
AMLの既存の調査では、マネーロンダリング検出のための機械学習アプローチを概観している。
このギャップに対処するため,本論文では,ディープラーニングソリューションの総合的なレビューと,それらがAMLで使用していることに関連する課題について述べる。
さらに、機械学習技術を統合し、AML赤旗を符号化し、アカウントプロファイリングを用いて予測のコンテキストを提供し、限られたデータ可用性下で効果的な不正検出を可能にすることにより、最小特権の原則を適用する新しいフレームワークを提案する。
関連論文リスト
- Deep Learning for Cross-Border Transaction Anomaly Detection in Anti-Money Laundering Systems [14.439233916969748]
本稿では,クロスボーダーAMLシステムにおける教師なし学習モデルの応用について検討する。
基本畳み込みニューラルネットワーク(CNN)からハイブリッドCNNGRUアーキテクチャまでの5つのディープラーニングモデルが設計およびテストされた。
その結果、モデル複雑性が増加するにつれて、システムの検出精度と応答性も向上することが示された。
論文 参考訳(メタデータ) (2024-11-21T03:55:41Z) - Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
異常と欠落したデータは、産業応用における厄介な問題を構成する。
ディープラーニングによる異常検出が重要な方向として現れている。
エッジデバイスで収集されたデータは、ユーザのプライバシを含む。
論文 参考訳(メタデータ) (2024-11-06T15:38:31Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
本稿では,Large Language Models (LLM) 埋め込みを用いた財務データにおける異常検出の新しい手法を提案する。
実験により,LLMが異常検出に有用な情報をもたらし,モデルがベースラインを上回っていることが確認された。
論文 参考訳(メタデータ) (2024-06-05T20:19:09Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Starlit: Privacy-Preserving Federated Learning to Enhance Financial
Fraud Detection [2.436659710491562]
Federated Learning(FL)は、さまざまなクライアントとローカルデータの間で協調的なモデルトレーニングを可能にする、データ最小化のアプローチである。
不正な金融取引を識別するための最先端のFLソリューションは、以下の制限のサブセットを示している。
Starlitは,これらの制限を克服する,スケーラブルなプライバシ保護機構である。
論文 参考訳(メタデータ) (2024-01-19T15:37:11Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
本稿では,アダプティブサンプリングとアグリゲーションに基づくグラフニューラルネットワーク(ASA-GNN)を提案する。
ノイズの多いノードをフィルタリングし、不正なノードを補うために、隣のサンプリング戦略を実行する。
3つのファイナンシャルデータセットの実験により,提案手法のASA-GNNは最先端のデータセットよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-11T07:48:39Z) - Semantic Information Marketing in The Metaverse: A Learning-Based
Contract Theory Framework [68.8725783112254]
仮想サービスプロバイダ(VSP)によるインセンティブのメカニズム設計の問題に対処し,センサデータ販売にIoTデバイスを採用。
帯域幅が限られているため,センサIoTデバイスによる配信データを削減するためにセマンティック抽出アルゴリズムを提案する。
本稿では,新しい反復型契約設計を提案し,マルチエージェント強化学習(MARL)の新たな変種を用いて,モデル付き多次元契約問題の解法を提案する。
論文 参考訳(メタデータ) (2023-02-22T15:52:37Z) - LaundroGraph: Self-Supervised Graph Representation Learning for
Anti-Money Laundering [5.478764356647437]
LaundroGraphは、新しい教師付きグラフ表現学習アプローチである。
マネーロンダリング防止プロセスを支援するための洞察を提供する。
我々の知る限りでは、これはAML検出の文脈における最初の完全自己教師システムである。
論文 参考訳(メタデータ) (2022-10-25T21:58:02Z) - Detecting Anomalous Cryptocurrency Transactions: an AML/CFT Application
of Machine Learning-based Forensics [5.617291981476445]
本論文は,さまざまな手法を用いて,有向グラフネットワークとして表現されるBitcoinトランザクションの現実的なデータセットを解析する。
これは、Graph Convolutional Networks(GCN)とGraph Attention Networks(GAT)として知られるニューラルネットワークタイプが、有望なAML/CFTソリューションであることを示している。
論文 参考訳(メタデータ) (2022-06-07T16:22:55Z) - A Time-Frequency based Suspicious Activity Detection for Anti-Money
Laundering [0.0]
マネーロンダリングは、犯罪者が犯罪の収益を金融システムに注入するために使う重要なメカニズムである。
これらの機関の現在のシステムのほとんどはルールベースであり、非効率である。
本稿では、金融取引の2次元表現を利用した時間周波数分析に基づく新しい特徴セットを提案する。
論文 参考訳(メタデータ) (2020-11-17T08:01:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。