Semantic Synergy: Unlocking Policy Insights and Learning Pathways Through Advanced Skill Mapping
- URL: http://arxiv.org/abs/2503.10094v1
- Date: Thu, 13 Mar 2025 06:41:26 GMT
- Title: Semantic Synergy: Unlocking Policy Insights and Learning Pathways Through Advanced Skill Mapping
- Authors: Phoebe Koundouri, Conrad Landis, Georgios Feretzakis,
- Abstract summary: This research introduces a comprehensive system based on state-of-the-art natural language processing, semantic embedding, and efficient search techniques.<n>The system automatically extracts and aggregates normalized competencies from multiple documents.<n>It creates strong relationships between recognized competencies, occupation profiles, and related learning courses.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research introduces a comprehensive system based on state-of-the-art natural language processing, semantic embedding, and efficient search techniques for retrieving similarities and thus generating actionable insights from raw textual information. The system automatically extracts and aggregates normalized competencies from multiple documents (such as policy files and curricula vitae) and creates strong relationships between recognized competencies, occupation profiles, and related learning courses. To validate its performance, we conducted a multi-tier evaluation that included both explicit and implicit skill references in synthetic and real-world documents. The results showed near-human-level accuracy, with F1 scores exceeding 0.95 for explicit skill detection and above 0.93 for implicit mentions. The system thereby establishes a sound foundation for supporting in-depth collaboration across the AE4RIA network. The methodology involves a multi-stage pipeline based on extensive preprocessing and data cleaning, semantic embedding and segmentation via SentenceTransformer, and skill extraction using a FAISS-based search method. The extracted skills are associated with occupation frameworks (as formulated in the ESCO ontology) and with learning paths offered through the Sustainable Development Goals Academy. Moreover, interactive visualization software, implemented with Dash and Plotly, presents graphs and tables for real-time exploration and informed decision-making by those involved in policymaking, training and learning supply, career transitions, and recruitment. Overall, this system, backed by rigorous validation, offers promising prospects for improved policymaking, human resource development, and lifelong learning by providing structured and actionable insights from raw, complex textual information.
Related papers
- A Comprehensive Survey on Integrating Large Language Models with Knowledge-Based Methods [4.686190098233778]
The paper highlights the benefits of integrating generative AI with knowledge bases, including improved data contextualization, enhanced model accuracy, and better utilization of knowledge resources.<n>The findings provide a detailed overview of the current state of research, identify key gaps, and offer actionable recommendations.
arXiv Detail & Related papers (2025-01-19T23:25:21Z) - FecTek: Enhancing Term Weight in Lexicon-Based Retrieval with Feature Context and Term-level Knowledge [54.61068946420894]
We introduce an innovative method by introducing FEature Context and TErm-level Knowledge modules.
To effectively enrich the feature context representations of term weight, the Feature Context Module (FCM) is introduced.
We also develop a term-level knowledge guidance module (TKGM) for effectively utilizing term-level knowledge to intelligently guide the modeling process of term weight.
arXiv Detail & Related papers (2024-04-18T12:58:36Z) - Acquiring Diverse Skills using Curriculum Reinforcement Learning with Mixture of Experts [58.220879689376744]
Reinforcement learning (RL) is a powerful approach for acquiring a good-performing policy.
We propose textbfDiverse textbfSkill textbfLearning (Di-SkilL) for learning diverse skills.
We show on challenging robot simulation tasks that Di-SkilL can learn diverse and performant skills.
arXiv Detail & Related papers (2024-03-11T17:49:18Z) - Towards Automated Knowledge Integration From Human-Interpretable Representations [55.2480439325792]
We introduce and motivate theoretically the principles of informed meta-learning enabling automated and controllable inductive bias selection.<n>We empirically demonstrate the potential benefits and limitations of informed meta-learning in improving data efficiency and generalisation.
arXiv Detail & Related papers (2024-02-25T15:08:37Z) - Generative Multi-Modal Knowledge Retrieval with Large Language Models [75.70313858231833]
We propose an innovative end-to-end generative framework for multi-modal knowledge retrieval.
Our framework takes advantage of the fact that large language models (LLMs) can effectively serve as virtual knowledge bases.
We demonstrate significant improvements ranging from 3.0% to 14.6% across all evaluation metrics when compared to strong baselines.
arXiv Detail & Related papers (2024-01-16T08:44:29Z) - Leveraging Knowledge Graphs for Orphan Entity Allocation in Resume
Processing [1.3654846342364308]
This research presents a novel approach for orphan entity allocation in resume processing using knowledge graphs.
The aim is to automate and enhance the efficiency of the job screening process by successfully bucketing orphan entities within resumes.
arXiv Detail & Related papers (2023-10-21T19:10:30Z) - Reinforcement Learning Based Multi-modal Feature Fusion Network for
Novel Class Discovery [47.28191501836041]
In this paper, we employ a Reinforcement Learning framework to simulate the cognitive processes of humans.
We also deploy a Member-to-Leader Multi-Agent framework to extract and fuse features from multi-modal information.
We demonstrate the performance of our approach in both the 3D and 2D domains by employing the OS-MN40, OS-MN40-Miss, and Cifar10 datasets.
arXiv Detail & Related papers (2023-08-26T07:55:32Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
We propose a retrieval-augmented approach, which retrieves schema-aware Reference As Prompt (RAP) for data-efficient knowledge graph construction.
RAP can dynamically leverage schema and knowledge inherited from human-annotated and weak-supervised data as a prompt for each sample.
arXiv Detail & Related papers (2022-10-19T16:40:28Z) - Ontology-enhanced Prompt-tuning for Few-shot Learning [41.51144427728086]
Few-shot Learning is aimed to make predictions based on a limited number of samples.
Structured data such as knowledge graphs and ontology libraries has been leveraged to benefit the few-shot setting in various tasks.
arXiv Detail & Related papers (2022-01-27T05:41:36Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
We propose a knowledge graph augmented network (KGAN) to incorporate external knowledge with explicitly syntactic and contextual information.
KGAN captures the sentiment feature representations from multiple perspectives, i.e., context-, syntax- and knowledge-based.
Experiments on three popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN.
arXiv Detail & Related papers (2022-01-13T08:25:53Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
We propose a novel dependency syntactic knowledge augmented interactive architecture with multi-task learning for end-to-end ABSA.
This model is capable of fully exploiting the syntactic knowledge (dependency relations and types) by leveraging a well-designed Dependency Relation Embedded Graph Convolutional Network (DreGcn)
Extensive experimental results on three benchmark datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-04T14:59:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.