Leveraging Knowledge Graphs for Orphan Entity Allocation in Resume
Processing
- URL: http://arxiv.org/abs/2310.14093v1
- Date: Sat, 21 Oct 2023 19:10:30 GMT
- Title: Leveraging Knowledge Graphs for Orphan Entity Allocation in Resume
Processing
- Authors: Aagam Bakliwal, Shubham Manish Gandhi, Yashodhara Haribhakta
- Abstract summary: This research presents a novel approach for orphan entity allocation in resume processing using knowledge graphs.
The aim is to automate and enhance the efficiency of the job screening process by successfully bucketing orphan entities within resumes.
- Score: 1.3654846342364308
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Significant challenges are posed in talent acquisition and recruitment by
processing and analyzing unstructured data, particularly resumes. This research
presents a novel approach for orphan entity allocation in resume processing
using knowledge graphs. Techniques of association mining, concept extraction,
external knowledge linking, named entity recognition, and knowledge graph
construction are integrated into our pipeline. By leveraging these techniques,
the aim is to automate and enhance the efficiency of the job screening process
by successfully bucketing orphan entities within resumes. This allows for more
effective matching between candidates and job positions, streamlining the
resume screening process, and enhancing the accuracy of candidate-job matching.
The approach's exceptional effectiveness and resilience are highlighted through
extensive experimentation and evaluation, ensuring that alternative measures
can be relied upon for seamless processing and orphan entity allocation in case
of any component failure. The capabilities of knowledge graphs in generating
valuable insights through intelligent information extraction and
representation, specifically in the domain of categorizing orphan entities, are
highlighted by the results of our research.
Related papers
- Artificial Intuition: Efficient Classification of Scientific Abstracts [42.299140272218274]
Short scientific texts efficiently transmit dense information to experts possessing a rich body of knowledge to aid interpretation.
To address this gap, we have developed a novel approach to generate and appropriately assign coarse domain-specific labels.
We show that a Large Language Model (LLM) can provide metadata essential to the task, in a process akin to the augmentation of supplemental knowledge.
arXiv Detail & Related papers (2024-07-08T16:34:47Z) - Knowledge Graph Extension by Entity Type Recognition [2.8231106019727195]
We propose a novel knowledge graph extension framework based on entity type recognition.
The framework aims to achieve high-quality knowledge extraction by aligning the schemas and entities across different knowledge graphs.
arXiv Detail & Related papers (2024-05-03T19:55:03Z) - Computational Job Market Analysis with Natural Language Processing [5.117211717291377]
This thesis investigates Natural Language Processing (NLP) technology for extracting relevant information from job descriptions.
We frame the problem, obtaining annotated data, and introducing extraction methodologies.
Our contributions include job description datasets, a de-identification dataset, and a novel active learning algorithm for efficient model training.
arXiv Detail & Related papers (2024-04-29T14:52:38Z) - Collaborative Knowledge Infusion for Low-resource Stance Detection [83.88515573352795]
Target-related knowledge is often needed to assist stance detection models.
We propose a collaborative knowledge infusion approach for low-resource stance detection tasks.
arXiv Detail & Related papers (2024-03-28T08:32:14Z) - Leveraging Knowledge Graph Embeddings to Enhance Contextual
Representations for Relation Extraction [0.0]
We propose a relation extraction approach based on the incorporation of pretrained knowledge graph embeddings at the corpus scale into the sentence-level contextual representation.
We conducted a series of experiments which revealed promising and very interesting results for our proposed approach.
arXiv Detail & Related papers (2023-06-07T07:15:20Z) - Design of Negative Sampling Strategies for Distantly Supervised Skill
Extraction [19.43668931500507]
We propose an end-to-end system for skill extraction, based on distant supervision through literal matching.
We observe that using the ESCO taxonomy to select negative examples from related skills yields the biggest improvements.
We release the benchmark dataset for research purposes to stimulate further research on the task.
arXiv Detail & Related papers (2022-09-13T13:37:06Z) - Information-Theoretic Odometry Learning [83.36195426897768]
We propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation.
The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language.
arXiv Detail & Related papers (2022-03-11T02:37:35Z) - Evidentiality-guided Generation for Knowledge-Intensive NLP Tasks [59.761411682238645]
Retrieval-augmented generation models have shown state-of-the-art performance across many knowledge-intensive NLP tasks.
We introduce a method to incorporate evidentiality of passages -- whether a passage contains correct evidence to support the output -- into training the generator.
arXiv Detail & Related papers (2021-12-16T08:18:47Z) - MURAL: Meta-Learning Uncertainty-Aware Rewards for Outcome-Driven
Reinforcement Learning [65.52675802289775]
We show that an uncertainty aware classifier can solve challenging reinforcement learning problems.
We propose a novel method for computing the normalized maximum likelihood (NML) distribution.
We show that the resulting algorithm has a number of intriguing connections to both count-based exploration methods and prior algorithms for learning reward functions.
arXiv Detail & Related papers (2021-07-15T08:19:57Z) - Privileged Information Dropout in Reinforcement Learning [56.82218103971113]
Using privileged information during training can improve the sample efficiency and performance of machine learning systems.
In this work, we investigate Privileged Information Dropout (pid) for achieving the latter which can be applied equally to value-based and policy-based reinforcement learning algorithms.
arXiv Detail & Related papers (2020-05-19T05:32:33Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.