SOLA-GCL: Subgraph-Oriented Learnable Augmentation Method for Graph Contrastive Learning
- URL: http://arxiv.org/abs/2503.10100v1
- Date: Thu, 13 Mar 2025 06:52:39 GMT
- Title: SOLA-GCL: Subgraph-Oriented Learnable Augmentation Method for Graph Contrastive Learning
- Authors: Tianhao Peng, Xuhong Li, Haitao Yuan, Yuchen Li, Haoyi Xiong,
- Abstract summary: We propose a novel subgraph-oriented learnable augmentation method for graph contrastive learning, termed SOLA-GCL.<n>SOLA-GCL partitions a graph into multiple densely connected subgraphs based on their intrinsic properties.<n>A graph view generator optimize augmentation strategies for each subgraph, thereby generating tailored views for graph contrastive learning.
- Score: 24.649741877466447
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph contrastive learning has emerged as a powerful technique for learning graph representations that are robust and discriminative. However, traditional approaches often neglect the critical role of subgraph structures, particularly the intra-subgraph characteristics and inter-subgraph relationships, which are crucial for generating informative and diverse contrastive pairs. These subgraph features are crucial as they vary significantly across different graph types, such as social networks where they represent communities, and biochemical networks where they symbolize molecular interactions. To address this issue, our work proposes a novel subgraph-oriented learnable augmentation method for graph contrastive learning, termed SOLA-GCL, that centers around subgraphs, taking full advantage of the subgraph information for data augmentation. Specifically, SOLA-GCL initially partitions a graph into multiple densely connected subgraphs based on their intrinsic properties. To preserve and enhance the unique characteristics inherent to subgraphs, a graph view generator optimizes augmentation strategies for each subgraph, thereby generating tailored views for graph contrastive learning. This generator uses a combination of intra-subgraph and inter-subgraph augmentation strategies, including node dropping, feature masking, intra-edge perturbation, inter-edge perturbation, and subgraph swapping. Extensive experiments have been conducted on various graph learning applications, ranging from social networks to molecules, under semi-supervised learning, unsupervised learning, and transfer learning settings to demonstrate the superiority of our proposed approach over the state-of-the-art in GCL.
Related papers
- Hypergraph-enhanced Dual Semi-supervised Graph Classification [14.339207883093204]
We propose a Hypergraph-Enhanced DuAL framework named HEAL for semi-supervised graph classification.
To better explore the higher-order relationships among nodes, we design a hypergraph structure learning to adaptively learn complex node dependencies.
Based on the learned hypergraph, we introduce a line graph to capture the interaction between hyperedges.
arXiv Detail & Related papers (2024-05-08T02:44:13Z) - Subgraph Networks Based Contrastive Learning [5.736011243152416]
Graph contrastive learning (GCL) can solve the problem of annotated data scarcity.
Most existing GCL methods focus on the design of graph augmentation strategies and mutual information estimation operations.
We propose a novel framework called subgraph network-based contrastive learning (SGNCL)
arXiv Detail & Related papers (2023-06-06T08:52:44Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Dual Space Graph Contrastive Learning [82.81372024482202]
We propose a novel graph contrastive learning method, namely textbfDual textbfSpace textbfGraph textbfContrastive (DSGC) Learning.
Since both spaces have their own advantages to represent graph data in the embedding spaces, we hope to utilize graph contrastive learning to bridge the spaces and leverage advantages from both sides.
arXiv Detail & Related papers (2022-01-19T04:10:29Z) - Group Contrastive Self-Supervised Learning on Graphs [101.45974132613293]
We study self-supervised learning on graphs using contrastive methods.
We argue that contrasting graphs in multiple subspaces enables graph encoders to capture more abundant characteristics.
arXiv Detail & Related papers (2021-07-20T22:09:21Z) - Multi-Level Graph Contrastive Learning [38.022118893733804]
We propose a Multi-Level Graph Contrastive Learning (MLGCL) framework for learning robust representation of graph data by contrasting space views of graphs.
The original graph is first-order approximation structure and contains uncertainty or error, while the $k$NN graph generated by encoding features preserves high-order proximity.
Extensive experiments indicate MLGCL achieves promising results compared with the existing state-of-the-art graph representation learning methods on seven datasets.
arXiv Detail & Related papers (2021-07-06T14:24:43Z) - Diversified Multiscale Graph Learning with Graph Self-Correction [55.43696999424127]
We propose a diversified multiscale graph learning model equipped with two core ingredients.
A graph self-correction (GSC) mechanism to generate informative embedded graphs, and a diversity boosting regularizer (DBR) to achieve a comprehensive characterization of the input graph.
Experiments on popular graph classification benchmarks show that the proposed GSC mechanism leads to significant improvements over state-of-the-art graph pooling methods.
arXiv Detail & Related papers (2021-03-17T16:22:24Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.