Markerless Tracking-Based Registration for Medical Image Motion Correction
- URL: http://arxiv.org/abs/2503.10260v2
- Date: Fri, 21 Mar 2025 18:47:46 GMT
- Title: Markerless Tracking-Based Registration for Medical Image Motion Correction
- Authors: Luisa Neubig, Deirdre Larsen, Takeshi Ikuma, Markus Kopp, Melda Kunduk, Andreas M. Kist,
- Abstract summary: This study focuses on isolating swallowing dynamics from interfering patient motion in videofluoroscopy.<n> Optical flow methods fail due to artifacts like flickering and instability, making them unreliable for distinguishing different motion groups.<n>We introduce a novel motion correction pipeline that effectively removes disruptive motion while preserving swallowing dynamics.
- Score: 0.4288177321445912
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Our study focuses on isolating swallowing dynamics from interfering patient motion in videofluoroscopy, an X-ray technique that records patients swallowing a radiopaque bolus. These recordings capture multiple motion sources, including head movement, anatomical displacements, and bolus transit. To enable precise analysis of swallowing physiology, we aim to eliminate distracting motion, particularly head movement, while preserving essential swallowing-related dynamics. Optical flow methods fail due to artifacts like flickering and instability, making them unreliable for distinguishing different motion groups. We evaluated markerless tracking approaches (CoTracker, PIPs++, TAP-Net) and quantified tracking accuracy in key medical regions of interest. Our findings show that even sparse tracking points generate morphing displacement fields that outperform leading registration methods such as ANTs, LDDMM, and VoxelMorph. To compare all approaches, we assessed performance using MSE and SSIM metrics post-registration. We introduce a novel motion correction pipeline that effectively removes disruptive motion while preserving swallowing dynamics and surpassing competitive registration techniques.
Related papers
- EchoWorld: Learning Motion-Aware World Models for Echocardiography Probe Guidance [79.66329903007869]
We present EchoWorld, a motion-aware world modeling framework for probe guidance.
It encodes anatomical knowledge and motion-induced visual dynamics.
It is trained on more than one million ultrasound images from over 200 routine scans.
arXiv Detail & Related papers (2025-04-17T16:19:05Z) - Motion Artifact Removal in Pixel-Frequency Domain via Alternate Masks and Diffusion Model [58.694932010573346]
Motion artifacts present in magnetic resonance imaging (MRI) can seriously interfere with clinical diagnosis.<n>We propose a novel unsupervised purification method which leverages pixel-frequency information of noisy MRI images to guide a pre-trained diffusion model to recover clean MRI images.
arXiv Detail & Related papers (2024-12-10T15:25:18Z) - Highly efficient non-rigid registration in k-space with application to cardiac Magnetic Resonance Imaging [10.618048010632728]
We propose a novel self-supervised deep learning-based framework, dubbed the Local-All Pass Attention Network (LAPANet) for non-rigid motion estimation.
LAPANet was evaluated on cardiac motion estimation across various sampling trajectories and acceleration rates.
The achieved high temporal resolution (less than 5 ms) for non-rigid motion opens new avenues for motion detection, tracking and correction in dynamic and real-time MRI applications.
arXiv Detail & Related papers (2024-10-24T15:19:59Z) - Motion-adaptive Separable Collaborative Filters for Blind Motion Deblurring [71.60457491155451]
Eliminating image blur produced by various kinds of motion has been a challenging problem.
We propose a novel real-world deblurring filtering model called the Motion-adaptive Separable Collaborative Filter.
Our method provides an effective solution for real-world motion blur removal and achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-04-19T19:44:24Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Motion-Guided Dual-Camera Tracker for Endoscope Tracking and Motion Analysis in a Mechanical Gastric Simulator [5.073179848641095]
Motion-guided dual-camera vision tracker is proposed to provide robust and accurate tracking of the endoscope tip's 3D position.<n>The proposed tracker achieves superior performance against state-of-the-art vision trackers, achieving 42% and 72% improvements against the second-best method in average error and maximum error.
arXiv Detail & Related papers (2024-03-08T08:31:46Z) - MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
We introduce a novel motion-based tracker, MotionTrack, centered around a learnable motion predictor.
Our experimental results demonstrate that MotionTrack yields state-of-the-art performance on datasets such as Dancetrack and SportsMOT.
arXiv Detail & Related papers (2023-06-05T04:24:11Z) - DRIMET: Deep Registration for 3D Incompressible Motion Estimation in
Tagged-MRI with Application to the Tongue [11.485843032637439]
Tagged magnetic resonance imaging(MRI) has been used for decades to observe and quantify the detailed motion of deforming tissue.
This paper presents a novel unsupervised phase-based 3D motion estimation technique for tagged MRI.
arXiv Detail & Related papers (2023-01-18T00:16:30Z) - LAPNet: Non-rigid Registration derived in k-space for Magnetic Resonance
Imaging [28.404584219735074]
Motion correction techniques have been proposed to compensate for these types of motion during thoracic scans.
A particular interest and challenge lie in the derivation of reliable non-rigid motion fields from the undersampled motion-resolved data.
We propose a deep-learning based approach to perform fast and accurate non-rigid registration from the undersampled k-space data.
arXiv Detail & Related papers (2021-07-19T15:39:23Z) - Continuous Decoding of Daily-Life Hand Movements from Forearm Muscle
Activity for Enhanced Myoelectric Control of Hand Prostheses [78.120734120667]
We introduce a novel method, based on a long short-term memory (LSTM) network, to continuously map forearm EMG activity onto hand kinematics.
Ours is the first reported work on the prediction of hand kinematics that uses this challenging dataset.
Our results suggest that the presented method is suitable for the generation of control signals for the independent and proportional actuation of the multiple DOFs of state-of-the-art hand prostheses.
arXiv Detail & Related papers (2021-04-29T00:11:32Z) - DeepTag: An Unsupervised Deep Learning Method for Motion Tracking on
Cardiac Tagging Magnetic Resonance Images [10.434681088538866]
We propose a novel deep learning-based fully unsupervised method for in vivo motion tracking on t-MRI images.
Our method has been validated on a representative clinical t-MRI dataset.
arXiv Detail & Related papers (2021-03-04T00:42:11Z) - Motion Pyramid Networks for Accurate and Efficient Cardiac Motion
Estimation [51.72616167073565]
We propose Motion Pyramid Networks, a novel deep learning-based approach for accurate and efficient cardiac motion estimation.
We predict and fuse a pyramid of motion fields from multiple scales of feature representations to generate a more refined motion field.
We then use a novel cyclic teacher-student training strategy to make the inference end-to-end and further improve the tracking performance.
arXiv Detail & Related papers (2020-06-28T21:03:19Z) - A Novel Approach for Correcting Multiple Discrete Rigid In-Plane Motions
Artefacts in MRI Scans [63.28835187934139]
We propose a novel method for removing motion artefacts using a deep neural network with two input branches.
The proposed method can be applied to artefacts generated by multiple movements of the patient.
arXiv Detail & Related papers (2020-06-24T15:25:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.