論文の概要: G-Boost: Boosting Private SLMs with General LLMs
- arxiv url: http://arxiv.org/abs/2503.10367v1
- Date: Thu, 13 Mar 2025 13:47:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:54:55.622749
- Title: G-Boost: Boosting Private SLMs with General LLMs
- Title(参考訳): G-Boost:一般LSMによるプライベートSLMの強化
- Authors: Yijiang Fan, Yuren Mao, Longbin Lai, Ying Zhang, Zhengping Qian, Yunjun Gao,
- Abstract要約: ほとんどのLarge Language Models (LLMs)開発者は、自身のデータに基づいてSLM(Small Language Models)を微調整できる。
本稿では,一般のLSMに対して,プライベートSLMの性能向上を支援することを提案する。
- 参考スコア(独自算出の注目度): 27.656951776655045
- License:
- Abstract: Due to the limited computational resources, most Large Language Models (LLMs) developers can only fine-tune Small Language Models (SLMs) on their own data. These private SLMs typically have limited effectiveness. To boost the performance of private SLMs, this paper proposes to ask general LLMs for help. The general LLMs can be APIs or larger LLMs whose inference cost the developers can afford. Specifically, we propose the G-Boost framework where a private SLM adaptively performs collaborative inference with a general LLM under the guide of process reward. Experiments demonstrate that our framework can significantly boost the performance of private SLMs.
- Abstract(参考訳): 計算資源が限られているため、ほとんどのLLM(Large Language Models)開発者は、自身のデータ上でSLM(Small Language Models)を微調整できる。
これらのプライベートSLMは、通常、有効性に制限がある。
本稿では,私設SLMの性能向上のために,一般LLMに支援を求めることを提案する。
一般的な LLM は API あるいはより大きな LLM で,開発者は推論に費用を支払うことができる。
具体的には、プロセス報酬のガイドの下で、プライベートSLMが一般的なLCMとの協調推論を適応的に行うG-Boostフレームワークを提案する。
実験により、我々のフレームワークはプライベートSLMの性能を大幅に向上させることができることが示された。
関連論文リスト
- Differentially Private Steering for Large Language Model Alignment [55.30573701583768]
本稿では,大規模言語モデルとプライベートデータセットの整合性に関する最初の研究について述べる。
本研究では, LLM underlineAment (PSA) アルゴリズムのためのtextitunderlinePrivate underlineSteeringを提案する。
以上の結果から,PSAはLPMアライメントのDP保証を実現し,性能の低下を最小限に抑えることができた。
論文 参考訳(メタデータ) (2025-01-30T17:58:36Z) - Stacking Small Language Models for Generalizability [0.0]
大規模言語モデル(LLM)は、異なる自然言語ベンチマークで強いパフォーマンスを一般化する。
本稿では,言語モデルの微調整スタック (FSLM) と呼ばれる新しいアプローチを提案する。
特定のタスクを実行するために各SLMを微調整することにより、このアプローチは、特定のSLMが責任を負う複数の低レベルステップに高レベル推論を分解する。
その結果、FSLMはトレーニングと推論のコストを低減し、各SLMが後続のSLMと自然言語を介して通信するので、モデルの解釈性を向上させることができる。
論文 参考訳(メタデータ) (2024-10-21T01:27:29Z) - Decoding with Limited Teacher Supervision Requires Understanding When to Trust the Teacher [11.136112399898481]
小規模大規模言語モデル(LLM)は、LLMの監督を効果的に活用して、その生成品質を向上するにはどうすればよいのか?
我々は,初期トークン上でのLLMおよびLLM予測を効果的に集約するアルゴリズムを開発した。
提案手法は,従来の復号法よりも一貫した手法であることを示す。
論文 参考訳(メタデータ) (2024-06-26T01:16:12Z) - Parrot: Efficient Serving of LLM-based Applications with Semantic Variable [11.894203842968745]
Parrotは、LLMベースのアプリケーションのエンドツーエンドエクスペリエンスに焦点を当てたサービスシステムである。
Semantic Variableはリクエストのプロンプトで入出力変数に注釈を付け、複数のLLMリクエストを接続する際にデータパイプラインを生成する。
論文 参考訳(メタデータ) (2024-05-30T09:46:36Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented Generation (RAG)は、大規模言語モデル(LLM)を改善するための有望な方法である。
本稿では,RAGのためのスケーラブルでプラガブルな仮想トークンを学習する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:44:54Z) - An Embarrassingly Simple Approach for LLM with Strong ASR Capacity [56.30595787061546]
我々は,音声基礎エンコーダと大規模言語モデル(LLM)を用いて,音声処理の分野で最も重要な課題の1つを解決することに注力する。
最近の研究は、音声エンコーダの出力を時間的に圧縮したり、プロジェクタのモーダルアライメントに対処したり、LLMのパラメータ効率の良い微調整を利用するといった複雑な設計をしている。
そこで本研究では,市販の音声エンコーダLLMと,トレーニング可能な唯一の線形プロジェクタの単純な構成がASRタスクに適しているのに対して,繊細な設計は必要ないことを発見した。
論文 参考訳(メタデータ) (2024-02-13T23:25:04Z) - Large Language Models: A Survey [69.72787936480394]
大規模言語モデル(LLM)は、広範囲の自然言語タスクにおける強力なパフォーマンスのために、多くの注目を集めている。
LLMの汎用言語理解と生成能力は、膨大なテキストデータに基づいて数十億のモデルのパラメータを訓練することで得られる。
論文 参考訳(メタデータ) (2024-02-09T05:37:09Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
本稿では,大規模言語モデル(LLM)における知識融合の概念を紹介する。
我々は、それらの集合的知識と独特な強みを外部化し、それによってターゲットモデルの能力が、どのソースLLMよりも高められるようにします。
この結果から,LLMの融合により,推論やコモンセンス,コード生成など,対象モデルの性能が向上することが確認された。
論文 参考訳(メタデータ) (2024-01-19T05:02:46Z) - Mutual Enhancement of Large and Small Language Models with Cross-Silo
Knowledge Transfer [27.63746419563747]
大規模言語モデル (LLM) には幅広い知識が与えられているが、そのタスク固有の性能は、しばしば準最適である。
タスク固有のデータで微調整 LLM を必要とするが、プライバシー上の懸念からアクセスできない可能性がある。
本研究では,より小さな言語モデル (SLM) でLLMを強化し,クライアント上でプライベートなタスク固有データを用いて学習する手法を提案する。
論文 参考訳(メタデータ) (2023-12-10T09:52:32Z) - Augmented Large Language Models with Parametric Knowledge Guiding [72.71468058502228]
大規模言語モデル(LLM)は、言語理解と生成能力に優れた自然言語処理(NLP)を備えています。
それらのパフォーマンスは、関連するデータへの限られた露出のために専門的な知識を必要とするドメイン固有のタスクに最適であるかもしれない。
本稿では,LLMに関連知識にアクセスするための知識誘導モジュールを組み込んだ新しいPKGフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-08T15:05:16Z) - Large Language Model Is Not a Good Few-shot Information Extractor, but a
Good Reranker for Hard Samples! [43.51393135075126]
大きな言語モデル(LLM)は、様々なタスクにおいて顕著な進歩を遂げています。
その結果,従来のLCMは微調整SLMに比べて性能が劣り,レイテンシが高く,予算要求も増大していることがわかった。
LLMの強度とSLMの強度を結合する適応フィルタ-then-rerankパラダイムを提案する。
論文 参考訳(メタデータ) (2023-03-15T12:20:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。