Low Complexity Point Tracking of the Myocardium in 2D Echocardiography
- URL: http://arxiv.org/abs/2503.10431v1
- Date: Thu, 13 Mar 2025 14:53:00 GMT
- Title: Low Complexity Point Tracking of the Myocardium in 2D Echocardiography
- Authors: Artem Chernyshov, John Nyberg, Vegard Holmstrøm, Md Abulkalam Azad, Bjørnar Grenne, Håvard Dalen, Svein Arne Aase, Lasse Lovstakken, Andreas Østvik,
- Abstract summary: MyoTracker is a low-complexity architecture (0.3M parameters) for point tracking in echocardiography.<n>It builds on the CoTracker2 architecture by simplifying its components and extending the temporal context.<n>MyoTracker was 74 times faster during inference than CoTracker2 and 11 times faster than EchoTracker with our setup.
- Score: 0.7584529737781703
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep learning methods for point tracking are applicable in 2D echocardiography, but do not yet take advantage of domain specifics that enable extremely fast and efficient configurations. We developed MyoTracker, a low-complexity architecture (0.3M parameters) for point tracking in echocardiography. It builds on the CoTracker2 architecture by simplifying its components and extending the temporal context to provide point predictions for the entire sequence in a single step. We applied MyoTracker to the right ventricular (RV) myocardium in RV-focused recordings and compared the results with those of CoTracker2 and EchoTracker, another specialized point tracking architecture for echocardiography. MyoTracker achieved the lowest average point trajectory error at 2.00 $\pm$ 0.53 mm. Calculating RV Free Wall Strain (RV FWS) using MyoTracker's point predictions resulted in a -0.3$\%$ bias with 95$\%$ limits of agreement from -6.1$\%$ to 5.4$\%$ compared to reference values from commercial software. This range falls within the interobserver variability reported in previous studies. The limits of agreement were wider for both CoTracker2 and EchoTracker, worse than the interobserver variability. At inference, MyoTracker used 67$\%$ less GPU memory than CoTracker2 and 84$\%$ less than EchoTracker on large sequences (100 frames). MyoTracker was 74 times faster during inference than CoTracker2 and 11 times faster than EchoTracker with our setup. Maintaining the entire sequence in the temporal context was the greatest contributor to MyoTracker's accuracy. Slight additional gains can be made by re-enabling iterative refinement, at the cost of longer processing time.
Related papers
- LiteTracker: Leveraging Temporal Causality for Accurate Low-latency Tissue Tracking [84.52765560227917]
LiteTracker is a low-latency method for tissue tracking in endoscopic video streams.
LiteTracker builds on a state-of-the-art long-term point tracking method, and introduces a set of training-free runtime optimizations.
arXiv Detail & Related papers (2025-04-14T05:53:57Z) - Temporal Correlation Meets Embedding: Towards a 2nd Generation of JDE-based Real-Time Multi-Object Tracking [52.04679257903805]
Joint Detection and Embedding (JDE) trackers have demonstrated excellent performance in Multi-Object Tracking (MOT) tasks.
Our tracker, named TCBTrack, achieves state-of-the-art performance on multiple public benchmarks.
arXiv Detail & Related papers (2024-07-19T07:48:45Z) - Tracking with Human-Intent Reasoning [64.69229729784008]
This work proposes a new tracking task -- Instruction Tracking.
It involves providing implicit tracking instructions that require the trackers to perform tracking automatically in video frames.
TrackGPT is capable of performing complex reasoning-based tracking.
arXiv Detail & Related papers (2023-12-29T03:22:18Z) - CoTracker: It is Better to Track Together [70.63040730154984]
CoTracker is a transformer-based model that tracks a large number of 2D points in long video sequences.
We show that joint tracking significantly improves tracking accuracy and robustness, and allows CoTracker to track occluded points and points outside of the camera view.
arXiv Detail & Related papers (2023-07-14T21:13:04Z) - NeighborTrack: Improving Single Object Tracking by Bipartite Matching
with Neighbor Tracklets [22.877838749427674]
NeighborTrack is a post-processor that leverages neighbor information of the tracking target to validate and improve single-object tracking (SOT) results.
It uses the confidence score predicted by the backbone SOT network to automatically derive neighbor information and then uses this information to improve the tracking results.
arXiv Detail & Related papers (2022-11-12T13:43:58Z) - VariabilityTrack:Multi-Object Tracking with Variable Speed Object
Movement [1.6385815610837167]
Multi-object tracking (MOT) aims at estimating bounding boxes and identities of objects in videos.
We propose a variable speed Kalman filter algorithm based on environmental feedback and improve the matching process.
arXiv Detail & Related papers (2022-03-12T12:39:41Z) - LightTrack: Finding Lightweight Neural Networks for Object Tracking via
One-Shot Architecture Search [104.84999119090887]
We present LightTrack, which uses neural architecture search (NAS) to design more lightweight and efficient object trackers.
Comprehensive experiments show that our LightTrack is effective.
It can find trackers that achieve superior performance compared to handcrafted SOTA trackers, such as SiamRPN++ and Ocean.
arXiv Detail & Related papers (2021-04-29T17:55:24Z) - Tracking Objects as Points [83.9217787335878]
We present a simultaneous detection and tracking algorithm that is simpler, faster, and more accurate than the state of the art.
Our tracker, CenterTrack, applies a detection model to a pair of images and detections from the prior frame.
CenterTrack is simple, online (no peeking into the future), and real-time.
arXiv Detail & Related papers (2020-04-02T17:58:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.